International Journal of Primatology

, Volume 23, Issue 1, pp 51–68 | Cite as

Reproductive Parameters and Maternal Investment in Mandrills (Mandrillus sphinx)

  • Joanna M. Setchell
  • Phyllis C. Lee
  • E. Jean Wickings
  • Alan F. Dixson


We report on 14 years of reproductive data for semifree-ranging mandrills (Mandrillus sphinx) in Gabon, and we explore relationships between female rank, age and parity, and reproductive strategies. Most births (61% of 132) occurred during the wet season in Gabon, between January and March. Female rank and parity were unrelated to the timing of parturition. Gestation lengths average 175 days (SE = ±1 day; N = 61) and were similar irrespective of female rank, parity, or sex of offspring. Birth sex ratio did not differ significantly from unity (52% male), and was unrelated to maternal rank or parity. Stillbirths and neonatal mortality tended to be more common among lower-ranking females than among either mid-ranking or dominant females. Median age at first birth is 4.71 years, at a median body mass of 7.6 kg, ca 5 years before females attain their adult body mass (median 12 kg). Age at first reproduction is significantly correlated with dominance rank, with dominant females giving birth on average 1.3 years earlier than lower-ranking females do. Interbirth intervals (IBI) average 405 days (range 184–1159 days, N = 103), and are independent of the sex of the offspring. Infant death within 6 months shortened IBI to 305 days. Increasing age and parity are also associated with short IBI, as is higher rank. Maternal rank and parity appear to influence reproductive success in female mandrills, but there is no apparent differential maternal investment by sex.

sex ratio age-specific fecundity interbirth intervals status parity Mandrillus sphinx 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altmann, J. (1980). Baboon Mothers and Infants, Harvard University Press, Harvard.Google Scholar
  2. Altmann, S. A. (1991). Diets of yearling female primates (Papio cynocephalus) predict lifetime fitness. Proc. Natl. Acad. Sci. USA 88: 420–423.Google Scholar
  3. Bercovitch, F.B (1993). Dominance rank and reproductive maturation in male rhesus macaques (Macaca mulatta). J. Reprod. Fert. 99: 113–120.Google Scholar
  4. Bercovitch, F. B., and Berard, J. D. (1993). Life history costs and consequences of rapid reproductive maturation in female rhesus macaques. Behav. Ecol. Sociobiol. 32: 103–109.Google Scholar
  5. Bercovitch, F. B., and Strum, S. C. (1993). Dominance rank, resource availability and reproductive maturation in female savanna baboons. Behav. Ecol. Sociobiol. 33: 313–318.Google Scholar
  6. Berman, C. M. (1988). Maternal condition and offspring sex ratio in a group of free-ranging rhesus monkeys: An 11-year study. Am. Nat. 131: 307–328.Google Scholar
  7. Bettinger, T., Wallis, J., and Morris, A. (1995). Reproductive parameters of mandrills at the Tulsa Zoo. Zoo Biol. 14: 115–121.Google Scholar
  8. Boesch, C. (1997). Evidence for dominant wild chimpanzees investing more in sons. Anim. Behav. 54: 811–815.Google Scholar
  9. Byers, J. A., and Moodie, J. D. (1990). Sex-specific maternal investment in pronghorn, and the question of a limit on differential provisioning in ungulates. Behav. Ecol. Sociobiol. 26: 157–164.Google Scholar
  10. Cheney, D. L., Seyfarth, R. M., Andelman, S. J., and Lee, P. C. (1989). Reproductive success in vervet monkeys. In Clutton-Brock, T. H. (ed.), Reproductive Success, University of Chicago Press, Chicago, pp. 384–402.Google Scholar
  11. Clutton-Brock, T. H. (1991). The Evolution of Parental Care, Princeton University Press, Princeton.Google Scholar
  12. Clutton-Brock, T. H., Albon, S. D., and Guinness, F. E. (1982). Red Deer: The Behaviour and Ecology of Two Sexes, University of Chicago Press, Chicago.Google Scholar
  13. Dixson, A. F., Bossi, T., and Wickings, E. J. (1993). Male dominance and genetically determined reproductive success in the mandrill (Mandrillus sphinx). Primates 34: 525–532.Google Scholar
  14. Feistner, A. T. C. (1990). Reproductive parameters in a semifree-ranging group of mandrills. In De Mello, M. T., Whiten, A., and Byrne, R. (eds.), Baboons: Behaviour and Ecology, Use and Care, University of Brasilia Press, Brasilia, pp. 77–88.Google Scholar
  15. Feistner, A. T. C. (1992). Aspects of reproduction of female mandrills (Mandrillus sphinx). Int. Zoo Yrbk. 31: 170–178.Google Scholar
  16. Gomendio, M. (1990). The influence of maternal rank and infant sex on maternal investment trends in macaques: Birth sex ratios, interbirth intervals and suckling patterns. Behav. Ecol. Sociobiol. 27: 365–375.Google Scholar
  17. Gomendio, M., Clutton-Brock, T. H., Albon, S.D., Guinness, F. E., and Simpson, M. J. A. (1990). Mammalian sex ratios and variation in the costs of rearing sons and daughters. Nature 343: 261–263.Google Scholar
  18. Harcourt, A. H. (1987). Dominance and fertility among female primates. J. Zool. Lond. 213: 471–487.Google Scholar
  19. Hill, W. C. O. (1970). Primates, Comparative Anatomy and Taxonomy, Vol. 8, Cynopithecinae, Papio, Mandrillus, Theropithecus, Edinburgh University Press, Edinburgh.Google Scholar
  20. Hiraiwa-Hasegawa, M.(1993). Skewed birth sex ratios in primates: Should high ranking mothers have daughters? Trends Ecol. Evol. 8: 395–400.Google Scholar
  21. Holekamp, K. E., and Smale, L. (1995). Rapid change in offspring sex ratios after class fission in the spotted hyena. Am. Nat. 145: 261–278.Google Scholar
  22. Itoigawa, N., Tanaka, T., Ukai, N., Fujii, H., Kurokawa, T., Koyama, T., Ando, A., Watanabe, Y., and Imaka, S. (1992). Demography and reproductive parameters of a free-ranging group of Japanese macaques (Macaca fuscata) at Katsuyama. Primates 33: 49–68.Google Scholar
  23. Kojola, I. (1998). Sex ratio and maternal investment in ungulates. Oikos 83: 567–573.Google Scholar
  24. Koyama, N., Takahata, Y., Huffmam, M. A., Norikoshi, K., and Sumb, H. (1992). Reproductive parameters of female Japanese macaques: Thirty years data from the Arashiyama troops, Japan. Primates 33: 33–47.Google Scholar
  25. Kruuk, L. E. B., Clutton-Brock, T. H., Albon, S. D., Pemberton, J. M., and Guinness, F. E. (1999). Population density affects sex ratio variation in red deer. Nature 399: 459–461.Google Scholar
  26. Lee, P. C., and Moss, C. J. (1986). Early maternal investment in male and female African elephants. Behav. Ecol. Sociobiol. 18: 353–361.Google Scholar
  27. Lee, P. C., and Moss, C. J. (1999). The social context for learning and behaviour among wild African elephants. In Box, H. O., and Gibson, K. R. (eds.), Mammalian Social Learning: Comparative and Ecological Perspectives, Cambridge University Press, Cambridge, pp. 102–125.Google Scholar
  28. Leigh, S. R. (1992). Patterns of variation in the ontogeny of primate body size dimorphism. J. Hum. Evol. 23: 27–50.Google Scholar
  29. Lunn, P.G., Austin, S., Prentice, A. M., and Whitehead, R.G. (1984). The effect of improved nutrition on plasma prolactin concentrations and postpartum infertility in lactating Gambian women. Am. J. Clin. Nutrit. 39: 227–235.Google Scholar
  30. McFarland Symington, M. (1987). Sex ratio and maternal rank in wild spider monkeys: When daughters disperse. Behav. Ecol. Sociobiol. 20: 421–425.Google Scholar
  31. Mori, A. (1979). Analysis of population changes by measurement of body weight in theKoshima troop of Japanese monkeys. Primates 20: 371–397.Google Scholar
  32. Muruthi, P., Altmann, J., and Altmann, S. A. (1991). Resource base, parity, and reproductive condition affect female's feeding time and nutrient intake within and between groups of a baboon population. Oecologia 87: 467–472.Google Scholar
  33. Oftedal, O. T. (1984). Milk composition, milk yield and energy output at peak lactation: A comparative review. Symp. Zool. Soc. Lond. 51: 33–85.Google Scholar
  34. Ono, K. A., and Boness, D. J. (1996). Sexual dimorphism in sea lion pups: Differential maternal investment, or sex-specific differences in energy allocation. Behav. Ecol. Sociobiol. 38: 31–41.Google Scholar
  35. Paul, A., and Kuester, J. (1990). Adaptive significance of sex ratio adjustment in semifreeranging Barbary macaques (Macaca sylvanus) at Salem. Behav. Ecol. Sociobiol. 27: 287–293.Google Scholar
  36. Paul, A., and Thommen, D. (1984). Timing of birth, female reproductive success and infant sex ration in semifree-ranging Barbary macaques (Macaca sylvanus) Folia Primatol. 42: 2–16.Google Scholar
  37. Pusey, A., Williams, J., and Goodall, J. (1997). The influence of dominance rank on the reproductive success of female chimpanzees. Science 277: 828–831.Google Scholar
  38. Rosetta, L. (1989). Breast feeding and post-partum amenorrhea in Serere women in Senegal. Ann. Hum. Biol. 16: 311–320.Google Scholar
  39. Setchell, J. M. (1999). Socio-sexual Development in the Male Mandrill (Mandrillus sphinx), PhD Thesis, University of Cambridge.Google Scholar
  40. Simpson, M. J. A., Simpson, A. E., Hooley, J., and Zunz, M. (1981). Infant-related influences on birth intervals in rhesus monkeys. Nature 290: 49–51.Google Scholar
  41. van Schaik, C. P., and Hrdy, S. B. (1991). Intensity of local resource competition shapes the relationship between maternal rank and sex ratios at birth in cercopithecine primates. Am. Nat. 138: 1555–1561.Google Scholar
  42. van Schaik, C. P., van Noordwijk, M. A., and Nunn, C. L. (1999). Sex and social evolution in primates. In Lee, P. C., (ed.), Comparative Primate Socioecology, Cambridge University Press, Cambridge, pp. 204–240.Google Scholar
  43. Whitten, P. L. (1983). Diet and dominance among female vervet monkeys (Cercopithecus aethiops). Am. J. Primatol. 5: 139–159.Google Scholar
  44. Wickings, E. J., and Dixson, A. F. (1992a). Development from birth to sexual maturity in a semifree-ranging colony of mandrills (Mandrillus sphinx) in Gabon. J. Reprod. Fert. 95: 129–138.Google Scholar
  45. Wickings, E. J., and Dixson, A. F. (1992b). Application ofDNAfingerprinting to familial studies of Gabonese primates. In Martin, R. D., Dixson, A. F., and Wickings, E. J. (eds.), Paternity in Primates: Genetic Tests and Theories, Basel, Karger, pp. 113–130.Google Scholar
  46. Wildt, D. E., Doyle, U., Stone, S.C., and Harrison, R. M. (1977). Correlation of perineal swelling with serum ovarian hormone levels, vaginal cytology and ovarian follicular development during the baboon reproductive cycle. Primates 18: 261–270.Google Scholar
  47. Willner, L. A., and Martin, R. D. (1985). Some basic principles of mammalian sexual dimorphism. In Ghesquiere, J., Martin, R. D., and Newcombe, F. (eds.), Human Sexual Dimorphism, Taylor and Francis, London, pp. 1–42.Google Scholar
  48. Wood, J. G. (1994). Dynamics of Human Reproduction, Aldine, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Joanna M. Setchell
    • 1
  • Phyllis C. Lee
    • 2
  • E. Jean Wickings
    • 3
  • Alan F. Dixson
    • 4
  1. 1.Sub-Department of Animal BehaviourUniversity of CambridgeMadingley, CambridgeU.K
  2. 2.Department of Biological AnthropologyUniversity of CambridgeCambridgeU.K
  3. 3.Centre International de Recherches MédicalesFrancevilleGabon
  4. 4.Centre for the Reproduction of Endangered SpeciesZoological Society of San DiegoSan Diego

Personalised recommendations