Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 249, Issue 2, pp 513–517 | Cite as

Distribution of tritium between water and exchangeable hydrogen bridges of biomolecules

  • F. Baumgärtner
  • Ch. Kardinal
  • G. Müllen
Article

Abstract

The fractionation factor of tritium between water and biomoleculeswhich are structured by hydrogen bridges, is found to be around 2. In additionto an intramolecular accumulation, an extra-molecular one is found to be about1.4 in the hydration sheets. During growth of plants (maize), the growth incrementof tritium in non-exchangeable organically bound tritium (OBT) is about 2.4times (140% larger than) the growth increment of hydrogen. The intrinsic growthrate of tritium is about 20 percent larger than that of hydrogen. Tritiumbound in water overtakes its kinetic delay in photosynthetic or metabolicreactions according to the larger mass by the fast established thermodynamicisotope effect of proton-triton exchange.

Keywords

Hydrogen Physical Chemistry Maize Hydration Inorganic Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. E. Buddenbaum,V. J. Shiner Jr., Isotope Effects on Enzyme-Catalyzed Reactions, W. W. Cleland,M. H. O'leary,D. B. Northrop (Eds), University Park Press, 1977.Google Scholar
  2. 2.
    M. M. Kreevoy, J. Chem. Educ., 41 (1964) 636 and Isotopes Org. Chem., 2 (1976) 1.CrossRefGoogle Scholar
  3. 3.
    G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, 1997.Google Scholar
  4. 4.
    G. A. Jeffrey,W. Saenger, Hydrogen Bonding in Biological Structures, Springer, Heidelberg, 1994.Google Scholar
  5. 5.
    F. BaumgÄrtner,M.-A. Kim, J. Radioanal. Nucl. Chem., 243 (2000) 295.CrossRefGoogle Scholar
  6. 6.
    F. BaumgÄrtner,M.-A. Kim, Appl. Radiation Isotopes, 41 (1990) 395.CrossRefGoogle Scholar
  7. 7.
    F. BaumgÄrtner,M.-A. Kim, Appl. Radiation Isotopes, 48 (1997) 721.CrossRefGoogle Scholar
  8. 8.
    M.-A. Kim,F. BaumgÄrtner, Appl. Radiation Isotopes, 45 (1994) 353.CrossRefGoogle Scholar
  9. 9.
    L. v. Bertalanff,W. Beier,R. Laue, Biophysik des Fließ gleichgewichts, Akademie Verlag, Berlin, 1977.CrossRefGoogle Scholar
  10. 10.
    R. O. Erickson, Ann. Rev. Plant Physiol., 27 (1976) 407.CrossRefGoogle Scholar
  11. 11.
    National Council on Radiation Protection and Measurements, Tritium and Other Radionuclide Labeled Organic Compounds Incorporated in Genetic Material, NCRP Report No. 63, 1979, p. 51.Google Scholar
  12. 12.
    F. Hibbert,J. Emsley, Adv. Phys. Org. Chem., 26 (1990) 255.Google Scholar
  13. 13.
    P. Schuster,G. Zundel,C. Sandorfy, The Hydrogen Bond, North-Holland Publ. Comp. Amsterdam, New York, Oxford, 1976.Google Scholar
  14. 14.
    Ch. M. Dobson,P. A. Evans,S. E. Radford, TIBS, 19 (1994) 31.PubMedGoogle Scholar
  15. 15.
    T. E. Creighton, Proteins, Structures and Molecular Properties, W. H. Freeman, New York, 1993.Google Scholar
  16. 16.
    T. Straume,A. L. Carsten, Health Phys., 65 (1993) 657.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers/Akadémiai Kiadó 2001

Authors and Affiliations

  • F. Baumgärtner
    • 1
  • Ch. Kardinal
    • 1
  • G. Müllen
    • 1
  1. 1.Institut für RadiochemieTechnische UniversitätMunichGermany

Personalised recommendations