Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 249, Issue 2, pp 283–288 | Cite as

The gamma-radiolysis of HEDTA in a simulated, mixed waste

  • A. P. TosteEmail author
Article

Abstract

The γ -radiolysis of the parent compound N-(2-hydroxyethyl)ethylenediaminetriaceticacid (HEDTA) in a simulant of a Hanford mixed waste, at a γ -dose of7.5 . 106±10% R, yielded 94.4% degradation. HEDTA radiolysisyielded four degradation products: glyoxylic acid, N-( nitroso)iminodiaceticacid (NIDA) and 2 dicarboxylic acids, ethandioic (oxalic) and propandioic(malonic) acids. Glyoxylic acid had been identified in previous studies byour laboratory as N-hydroxymethyl-N-methyliminoacetic acid (HMMIA). Promptedby studies from another laboratory, the chelator fragment previously reportedby our laboratory as N-(methylamine)iminodiacetic acid (MAIDA) is re-identifiedas NIDA. A methylamine moiety previously believed to be present in MAIDA,and several other chelator fragments, as well, has been re-identified as anitroso group.

Keywords

Physical Chemistry Inorganic Chemistry Degradation Product Parent Compound Dicarboxylic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. P. Toste,R. B. Lucke,T. J. Lechner-Fish,D. J. Hendren,R. B. Myers, Waste Managem., 87 (1987) No. 3, 323.Google Scholar
  2. 2.
    A. P. Toste,R. B. Myers,T. R. Pahl,R. B. Lucke, Health and Environmental Research on Complex Mixtures, DOE Symp. Ser. 62, National Technical Information Service (NTIS), Springfield, Virginia, 1987, p. 133.Google Scholar
  3. 3.
    A. P. Toste,T. J. Lechner-Fish,D. J. Hendren,R. D. Scheele,W. G. Richmond, J. Radioanal. Nucl. Chem., 123 (1988) 149.CrossRefGoogle Scholar
  4. 4.
    N. K. Taylor (Ed.), Organics in Radwaste, Harwell Laboratory, Oxfordshire, England, AERE R 13079, 1988.Google Scholar
  5. 5.
    A. P. Toste,T. J. Lechner-Fish, Rad. Waste Managem. Nucl. Fuel Cycle, 12 (1989) No. 1, 291.Google Scholar
  6. 6.
    B. A. Tomkins,J. E. Caton Jr.,G. S. Fleming,M. E. Garcia,S. H. Harmon,R. L. Schenley,L. J. Wachter,W. H. Griest, Anal. Chem., 61 (1989) 2751.CrossRefGoogle Scholar
  7. 7.
    B. A. Tomkins,J. E. Caton Jr.,M. D. Edwards,M. E. Garcia,R. L. Schenley,C. A. Treese,W. H. Griest, Anal. Chem., 62 (1990) 253.CrossRefGoogle Scholar
  8. 8.
    A. P. Toste,B. C. Osborn,K. J. Polach,T. J. Lechner-Fish, J. Radioanal. Nucl. Chem., 194 (1995) 25.CrossRefGoogle Scholar
  9. 9.
    J. A. Campbell,R. W. Stromatt,M. R. Smith,D. W. Koppenaal,R. M. Bean,T. E. Jones,D. M. Strachan,H. Babad, Anal. Chem., 66 (1994) 1208.CrossRefGoogle Scholar
  10. 10.
    K. E. Grant,G. M. Mong,R. B. Lucke,J. A. Campbell, J. Radioanal. Nucl. Chem., 211 (1996) 383.CrossRefGoogle Scholar
  11. 11.
    R. E. Gephart,R. E. Lundgren, Hanford Tank Clean Up: A Guide to Understanding the Technical Issues, Pacific Northwest Laboratory, Richland, WA, PNL-10773, 1995.CrossRefGoogle Scholar
  12. 12.
    G. R. Choppin,A. B. Johnson,J. F. Remark,A. E. Martell, Literature Review of Dilute Decontamination Processes for Water Cooled Nuclear Reactors, EPRI, Palo Alto, CA, EPRI-NP-1033, 1979.Google Scholar
  13. 13.
    A. P. Toste,L. J. Kirby,T. R. Pahl, Geochemical Behavior of Disposed Radioactive Waste, ACS Symp. Ser. 246, American Chemical Society, Washington, D. C., 1983, p. 251.Google Scholar
  14. 14.
    A. P. Toste,R. B. Myers, The Effects of Natural Organic Compounds and of Microorganisms on Radionuclide Transport, Radioactive Waste Management Committee, OECD Nuclear Energy Agency, Paris, France, RWM-6, 1986, p. 57.Google Scholar
  15. 15.
    A. E. Martell,R. J. Motekartes,A. R. Fried,J. S. Wilson,D. T. MacMillan, Can. J. Chem., 53 (1975) 3471.CrossRefGoogle Scholar
  16. 16.
    L. D. Anstine, The Dilute Chemical Decontamination Program, Quarterly Progress Reports, General Electric Company, Pleasanton, CA, NEDC-12705–2–7, 1978–80.Google Scholar
  17. 17.
    C. H. Delegard, Identity of the HEDTA Decomposition Product in Synthetic Hanford High-level Wastes, Rockwell Hanford Operations, Hanford, WA, RHO-RE-TI-062, 1983.Google Scholar
  18. 18.
    A. P. Toste, J. Radioanal. Nucl. Chem., 161 (1992) 549.CrossRefGoogle Scholar
  19. 19.
    A. P. Toste,T. J. Lechner-Fish, Waste Managem., 13 (1993) No. 3, 237.CrossRefGoogle Scholar
  20. 20.
    A. P. Toste,K. J. Polach,T. W. White, Waste Managem., 14 (1994) No. 1, 27.CrossRefGoogle Scholar
  21. 21.
    A. P. Toste, J. Adv. Oxid. Tech., 3 (1998) No. 1, 70.Google Scholar
  22. 22.
    A. P. Toste, J. Radioanal. Nucl. Chem., 235 (1998) 213.CrossRefGoogle Scholar
  23. 23.
    A. P. Toste, J. Radioanal. Nucl. Chem., 239 (1999) 433.CrossRefGoogle Scholar
  24. 24.
    P. C. Mandal,D. Bardhan,S. Sarkar,S. N. Bhattacharyya, J. Chem. Soc., Dalton Trans., 6 (1991) 1457.CrossRefGoogle Scholar
  25. 25.
    T. H. Dunning, Jr.,E. P. Horowitz,D. M. Strachan,E. H. Ashby,E. J. Hart,D. A. Reynolds,W. W. Schultz,D. D. Siemer,W. J. Thomson,D. S. Trent,R. M. Wallace, Chemical and Physical Processes in Tank 241-SY-101: A Preliminary Report, Pacific Northwest Laboratory, Richland, WA, PNL-7595, 1991.Google Scholar

Copyright information

© Kluwer Academic Publishers/Akadémiai Kiadó 2001

Authors and Affiliations

  1. 1.Department of ChemistrySouthwest Missouri State UniversitySpringfieldUSA

Personalised recommendations