Journal of Radioanalytical and Nuclear Chemistry

, Volume 249, Issue 2, pp 361–367 | Cite as

Instrumental neutron activation analysis (INAA) of estuarine sediments

  • K. RandleEmail author
  • J. Al-Jundi


There has been an increasing interest in the consequences of the effectof discharge of effluents containing chemical elements into the marine environment.Here, we present the determination of a number of heavy metals in sedimentsfrom the Ribble Estuary in the north-west of England. Sediment cores wereobtained from the Ribble estuary and the cores were subdivided into 5 cm segmentswhich were then freeze dried. Part of the material so obtained was then usedto produce samples with particles of a given size range, since uptake of heavymetals by sediments is very particle-size dependent. Selected samples werethen reactor irradiated for instrumental neutron activation analysis. Theaims of this present study are to establish depth and longitudinal distributionsof heavy metals at selected site locations and to investigate the criticalsediment parameters that influence the uptake and retention of such contaminants.


Physical Chemistry Heavy Metal Inorganic Chemistry Size Range Activation Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. N. Luoma,R. Dagovitz,E. Axtmann, Sci. Total Environ., 97/98 (1990) 685.CrossRefGoogle Scholar
  2. 2.
    V. T. Bowen,H. D. Livingston, in: Proc. Intern. Symp. on the Impacts of Radionuclide Releases into the Marine Environment, IAEA, Vienna, 1981, p. 33.Google Scholar
  3. 3.
    U. Forstner,W. Salomons, Environ. Technol. Lett., 1 (1980) 494.CrossRefGoogle Scholar
  4. 4.
    G. E. Gordon,K. Randle,G. G. Goles,J. B. Corliss,M. H. Beeson,S. Oxley, Geochim. Cosmochim. Acta, 32 (1968) 369.CrossRefGoogle Scholar
  5. 5.
    J. C. Laul,D. R. Case,M. Wechter,F. Schmid-Bleek,M. E. Lipschutz, J. Radioanal. Chem., 4 (1970) 241.CrossRefGoogle Scholar
  6. 6.
    R. H. Filby,W. A. Haller,K. R. Shah, J. Radioanal. Chem., 5 (1970) 227.CrossRefGoogle Scholar
  7. 7.
    J. R. Delater,I. D. Abercrombie, Earth Planet. Sci. Lett., 9 (1970) 327.CrossRefGoogle Scholar
  8. 8.
    E. Cortes, J. Radioanal. Nucl. Chem., 84 (1984) 157.CrossRefGoogle Scholar
  9. 9.
    K. Randle, Chem. Geol., 13 (1974) 237.CrossRefGoogle Scholar
  10. 10.
    A. Ando,H. Kurasawa,T. Ohmori,E. Takeda, Geochim. J., 8 (1974) 175.CrossRefGoogle Scholar
  11. 11.
    Y. Hamajima,M. Koba,K. Endo,H. Nakahara, J. Radioanal. Nucl. Chem., 89 (1985) 315.CrossRefGoogle Scholar
  12. 12.
    L. T. Thorne,G. Nickless, Sci. Total Environ., 19 (1981) 207.CrossRefGoogle Scholar
  13. 13.
    B. S. Krumgalz,G. Fainshtein,A. Cohen, Sci. Total Environ., 116 (1992) 15.CrossRefGoogle Scholar
  14. 14.
    P. J. Kershaw, R. J. Pentreath, D. S. Woodhead, G. J. Hunt, MAAF; ISSN 0142–2499; No. 32, Lowestoft, UK, 1992.Google Scholar
  15. 15.
    G. W. Bryan,W. J. Langston, Environ. Pollut., 76 (1992) 89.CrossRefGoogle Scholar
  16. 16.
    R. G. V. Hancock,W. C. Mayhaney, J. Radioanal. Nucl. Chem., 168 (1993) 83.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers/Akadémiai Kiadó 2001

Authors and Affiliations

  1. 1.School of ChemistryUniversity of BirminghamEdgbastonUK
  2. 2.Department of PhysicsHashemite UniversityZarka

Personalised recommendations