Plant Ecology

, Volume 155, Issue 1, pp 79–89 | Cite as

Effects of substrate coarseness and exposure on plant succession in uranium-mining wastes

  • C. Martínez-Ruiz
  • B. Fernández-Santos
  • J.M. Gómez-Gutiérrez


Speciesturnover and speed of primary revegetation on uranium-mining spoils aredescribed from the Centre-West part of Spain. Four 21-yr-old successional seresdiffering in substrate-grain size (broken/unbroken waste) andslope orientation (North/South) are compared. Qualitative andquantitative changes in species composition and the time required for recoveryof a terminal stage are analysed, using an undisturbed pasture as reference.Revegetation succession is faster on the broken waste and on the North slope.Moreover, there is a combined effect of both abiotic factors on the pattern andduration of revegetation succession. 195 plant taxa are recorded showing one offour patterns of change: (1) 'pioneer';(2) 'intermediate'; (3) 'latecoloniser'; (4) 'fluctuating'. Multivariateanalysisallows us to identify species following each of these patterns on eachsubstrate.

Abiotic factors Direction Mine-spoil heaps Natural revegetation Speed 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson D.W. 1977. Early stages of soil formation on glacial till mine spoils in a semi-arid climate. Geoderma 19: 11–19.CrossRefGoogle Scholar
  2. Aplet G.H., Hughes R.F. and Vitousek P.M. 1998. Ecosystem development on Hawaiian lava flows: biomass and species composition. J. Veg. Sci. 9: 17–26.Google Scholar
  3. Bakker J.P., Olff H., Willems J.H. and Zobel M. 1996. Why do we need permanent plots in the study of long-term vegetation dynamics? J. Veg. Sci. 7: 147–156.Google Scholar
  4. Borgegå rd S.O. 1990. Vegetation development abandoned gravel pits: effects of surrounding vegetation, substrate and regionality. J. Veg. Sci. 1: 675–682.Google Scholar
  5. Borkman R. 1981. Rates of change in vegetation during secondary succession. Vegetatio 47: 213–220.Google Scholar
  6. Bradshaw A.D. 1984. Ecological principles and land reclamation practice. Landscape Planning 11: 35–48.Google Scholar
  7. Burrows C.J. 1990. Processes of Vegetation Change. Unwin Hyman, London.Google Scholar
  8. Castroviejo S., Lainz M., Ló pez G., Montserrat P., Muñ oz F., Paiva J. et al. 1986–1993. Flora Iberica. C.S.I.C., Madrid.Google Scholar
  9. Cramer W. and Hytteborn H. 1987. The separation of fluctuation and long-term change in vegetation dynamics of a rising seashone. Vegetatio 69: 157–167.Google Scholar
  10. Del Moral R., Titus J.H. and Cook A.M. 1995. Early primary succession on Mount St. Helens, Washington, USA. J. Veg. Sci. 6: 107–120.Google Scholar
  11. Dorronsoro Fernández C.F. 1992. Suelos. In: Gó mez J.M. (ed.), El libro de las dehesas salmantinas. Junta de Castilla y Leó n, Salamanca, Spain, pp. 487–542.Google Scholar
  12. Down C.G. 1975. Soil development of colliery waste tips in relation to age. III. Chemical factors. J. Appl. Ecol. 12: 635–639.Google Scholar
  13. Drury W.H. and Nisbet I.C.T. 1973. Succession. J. Arnold Arbor. Har. Univ. 54: 331–368.Google Scholar
  14. Dunson W.A. and Travis J. 1991. The role of abiotic factors in community organization. Am. Nat. 138: 1067–1091.Google Scholar
  15. Ellery K.S. and Walker B.H. 1986. Growth characteristics of selected plant species on asbestos tailing from Msauli Mine, eastern Transvaal. South African Journal of Botany 52: 201–206.Google Scholar
  16. Gabriel K.R. 1971. The biplot graphic display of matrices with application to principal components analysis. Biometrika 58: 453–467.Google Scholar
  17. Galindo M.P. 1985. Contribuciones a la representació n simultáanea de datos multidimensionales. PhD Thesis, (unpublished).Google Scholar
  18. Galindo M.P. 1986. Una alternativa de representació n simultánea: HJ-Biplot. Questiio 10: 13–23. Estudio comparativo de ordenació n de comunidades ecoló gicas basado en técnicas factoriales.Google Scholar
  19. Galindo M.P., Barrera I., Fernández-Gó mez M.J. and Martín A. 1996. Serie de estudios biló gicos 55–61.Google Scholar
  20. Galindo M.P. and Cuadras C.M. 1986. Una extensió n del método Biplot y su relació n con otras técnicas. In: Publicaciones de Bioestadística y Biomatemática. Universidad de Barcelona n° 17, Barcelona, Spain.Google Scholar
  21. Gibson D.J., Johnson F.L. and Risser P.G. 1985. Revegetation of unreclaimed coal strip mines in Oklahoma. II. Plant Communities. Reclamation and Revegetation Research 4: 31–47.Google Scholar
  22. Glenn-Lewin D.C. 1980. The individualistic nature of plant community development. Vegetatio 43: 141–146.Google Scholar
  23. Golub G.H. and Reinsch C. 1970. Singular value decomposition and least squares solutions. Numer. Math 14: 403–420.Google Scholar
  24. Grime J.P. 1979. Plant Strategies and Vegetation Processes., Wiley, Chichester.Google Scholar
  25. Grime J.P. 1985. Towards a functional description of vegetation. In: White J. (ed.), The Population Structure of Vegetation. Dr W. Junk Pubs., Dordrecht.Google Scholar
  26. Grishin S.Y., del Moral R., Krestov P.V. and Verkholat V.P. 1996. Succession following the catastrophic eruption of Ksudach volcano (Kamchata, 1907). Vegetatio 127: 129–153.Google Scholar
  27. Grubb P.J. 1977. The maintenance of species-richness in plant communities. The importance of the regeneration niche. Biol. Rev. 52: 107–145.CrossRefGoogle Scholar
  28. Jenny H. 1941. Factors of Soil Formation. McGraw-Hill, New York.Google Scholar
  29. Jenny H. 1980. Soil Genesis with Ecological Perspectives. Springer-Verlag, New York.Google Scholar
  30. Johnson F.L., Gibson D.J. and Risser P.J. 1982. Revegetation of unreclaimed coal strip-mines in Oklahoma. I. Vegetation structure and soil properties. J. Appl. Ecol. 19: 453–463.Google Scholar
  31. Leisman G.A. 1957. A vegetation and soil chronosequence on the Mesabi iron range spoil banks, Minesota. Ecol. Monogr. 27: 221–245.Google Scholar
  32. Luken O.J. 1990. Directing Ecological Succession. Chapman & Hall, London.Google Scholar
  33. Major J. 1974. Kinds and rates of changes in vegetation and chronofunctions. In: Knapp R. (ed.), Vegetation Dynamics, Handbook of Vegetation Science 8. Junk, The Hague, pp. 7–18.Google Scholar
  34. Margalef R. 1968. Perspectives in Ecological Theory. Univ. Chicago Press, Chicago.Google Scholar
  35. Marrs R.H. and Bradshaw A.D. 1993. Primary succession on manmade wastes: the importance of resource acquisition. In: Miles J. and Walton D.W.H. (eds), Primary succession on land. Blackwell Scientific Publications, Oxford, pp. 221–247.Google Scholar
  36. Marrs R.H., Roberts R.D., Skeffington R.A. and Bradshaw A.D. 1981. Ecosystem development on naturally colonized china clay wastes. II. Nutrient compartmentation. J. Ecol. 69: 163–169.Google Scholar
  37. Martínez Ruiz C. 2000. Dynamics of debased land recovery of soil movements: plant succession and classification of species according to their colonization capacity. PhD Thesis.Google Scholar
  38. Monk C.D. 1967. Tree species diversity in the eastern deciduous forest with particular reference to North central Florida. Amer. Nat. 101: 173–187.Google Scholar
  39. Motyka J., Dobrzanski B. and Zawadski S. 1950. Wstepne badania nad lakami polundnlowowschodneij Lubeiszczyzny. Ann. Univ. M. Curie-Jklodowska. Sec. E. 5. 13: 367–447.Google Scholar
  40. Odum E.P. 1969. The strategy of ecosystem development. Science 164: 262–270.PubMedGoogle Scholar
  41. Olff H., Huisman J. and Van Tooren B.F. 1993. Species dynamics and nutrient accumulation during early primary succession in coastal sand dunes. J. Ecol. 81: 693–706.Google Scholar
  42. Olson J.S. 1958. Rates of succession and soil changes on Southern Lake Michigan sand dunes. Bot. Gaz. 119: 125–130.Google Scholar
  43. Pérez-Mellado V. and Galindo M.P. 1986. Biplot graphic display of Iberian and North African populations of Podarcis (Sauria: Lacertidae). In: RoČek Z. (ed.), Studies in Herpetology., Prague, pp. 197–200.Google Scholar
  44. Pickett S.T.A. 1989. Space-for time substitution as an alternative to long-term studies. In: Likens G.E. (ed.), Long-term Studies in Ecology: Approaches and Alternatives. Springer-Verlag, New York, NY, pp. 110–135.Google Scholar
  45. Pielou E.C. 1969. An introduction to Mathematical Ecology. J. Willey, New York.Google Scholar
  46. Piha M.I., Vallack H.W., Reeler B.M. and Michael N. 1995. A low input approach to vegetation establishment on mine and coal ash wastes in semi-arid regions. I. Tin mine tailing in Zimbabwe. J. Appl. Ecol. 32: 372–381.Google Scholar
  47. Prach K., Pysek P. and Smilaver P. 1993. On the rate of succession. Oikos 66: 343–346.Google Scholar
  48. Puerto A., Rico M., García J.A. and Gó mez J.M. 1982. La Diversidad I: Formulació n de un concepto de profundas raíces ecoló gicas. Salamanca Revista Provincial de Estudios 14: 199–217.Google Scholar
  49. Puerto A., Rico M., García J.A., García R. and García B. 1984. La Diversidad II: tendencias encontradas para tres series de la sucesió n cultivo-pastizal en la zona de dehesas de la provincia de Salamanca. Salamanca Revista Provincial de Estudios 14: 219–242.Google Scholar
  50. Rebele F. 1992. Colonization and early succession on anthropogenic soils. J. Veg. Sci. 3: 201–208.Google Scholar
  51. Reiners W.A., Worley I.A. and Lawrence D.B. 1970. Plant diversity in a chronosequence at Glacier bay, Alaska. Ecology 55: 55–59.Google Scholar
  52. Rivas-Gonzalo J.C., Gutiérrez Y., Polanco A.M., Herrero E., Vicente J.L., Galindo P. et al. 1993. Biplot Analysis applied to enological parameters in the geographical classification of young red wines. Am. J. Enol. Vitic. 44: 302–308.Google Scholar
  53. Roberts R.D., Marrs R.H., Skeffington R.A. and Bradshaw A.D. 1981. Ecosystem development on naturally-colonized china clay wastes. I. Vegetation changes and overall accumulation of organic matter and nutrients. J. Ecol. 69: 153–161.Google Scholar
  54. Rydin H. and Borgegå rd S.O. 1988. Primary succession over sixty years on hundred-year old islets in Lake Hjälmaren, Sweden. Vegetatio 77: 159–168.Google Scholar
  55. Santos C., Muñ oz S.S., Gutiérrez Y., Herrero E., Vicente J.L., Galindo P. et al. 1991. Characterization of young red wines by application of HJ-Biplot Analysis to acthocyanin profiles. J. Agric. Food. Chem. 39: 1086–1090.Google Scholar
  56. Shannon C.E. and Weaver W. 1949. The Mathematical Theory of Communication. Univ. Illinois Press, Urbana.Google Scholar
  57. Sorensen T. 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol. Skr. 5: 1–34.Google Scholar
  58. Tilman D. 1988. Plant Strategies and the Structure and Dynamics of Plant Communities. Princeton Univ. Press, Princeton, NJ.Google Scholar
  59. Titlyanova A.A. and Nironycheva-Tokareva N.P. 1990. Vegetation succession and biological turnover on coal-mining spoils. J. Veg. Sci. 1: 643–652.Google Scholar
  60. Tutin G.T., Heywood V.H., Burges N.A., Moore D.M., Valentine D.H., Walters S.M. et al. 1964–1980. Flora Europaea. Cambridge Univ. Press, Cambridge.Google Scholar
  61. Ursic K.A., Kenkel N.C. and Larson D.W. 1997. Revegetation dynamics of cliff faces in abandoned limestone quarries. J. Appl. Ecol. 34: 289–303.Google Scholar
  62. Walton D.W.H. 1993. Primary succession on land. In: Miles J. and Wilton D.W.H. (eds), Blackwell Scientific Publications, Oxford, pp. 33–53.Google Scholar
  63. Whittaker R.H. 1965. Dominance and diversity in land plant communities. Science 147: 250–260.Google Scholar
  64. Whittaker R.H. 1975. Communities and Ecosystems. 2nd edn. Macmillan, New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • C. Martínez-Ruiz
    • 1
  • B. Fernández-Santos
    • 2
  • J.M. Gómez-Gutiérrez
    • 2
  1. 1.E.T.S.II.AA. de PalenciaUniversidad de Valladolid, Area de EcologíaPalenciaSpain
  2. 2.Facultad de BiologíaUniversidad de Salamanca, Area de EcologíaSalamancaSpain

Personalised recommendations