Journal of Materials Science

, Volume 33, Issue 13, pp 3401–3405

Microhardness properties of Cu–W amorphous thin films

  • N. Radić
  • M. Stubicar
Article

Abstract

Pure copper, pure tungsten and amorphous Cu50W50 and Cu66W34 alloy films were deposited by the direct current magnetron sputtering technique on cooled glass substrates. The film microhardness has been investigated as a function of alloy composition and substrate potential bias during deposition. The microhardness exhibited a maximum at Cu concentrations close to 50 at%, similar to the case of completely miscible binary alloys. The ion bombardment caused by the negative substrate polarization increased the film microhardness. The annealing of the amorphous Cu–W films up to 250 °C in vacuum increased the film microhardness by 10–20% apparently owing to the formation of the W(Cu) crystalline phase dispersed within a predominantly amorphous film matrix.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. NASTASI, F. W. SARIS, L. S. HUNG and J. W. MAYER, J. Appl. Phys. 58 (1985) 3052.Google Scholar
  2. 2.
    M. A. ENGELHARDT, S. S. JASWAL and D. SELLMYER, Phys. Rev. B 44 (1991) 12671.Google Scholar
  3. 3.
    K. HASHIMOTO et al., Mater. Sci. Engng. A133 (1991) 22.Google Scholar
  4. 4.
    H. LANGE, W. MOHLING and G. MARXSEN, Thin Solid Films 205 (1991) 47.Google Scholar
  5. 5.
    A. G. DIRKS and J. J. VAN DER BROEK, J. Vac. Sci. Technol. A3 (1985) 2618.Google Scholar
  6. 6.
    K. D. AYLESWORTH, S. S. JASWAL, M. A. ENGELHARDT, Z. R. ZHAO and D. J. SELLMYER, Phys. Rev. B 37 (1988) 2426.Google Scholar
  7. 7.
    N. RADIĆ, B. GRŽETA, D. GRACIN and T. CAR, Thin Solid Films 228 (1993) 225.Google Scholar
  8. 8.
    A. N. PATEL and S. DIAMOND, Mater. Sci. Engng 98 (1988) 329.Google Scholar
  9. 9.
    E. GAFFET, C. LOUISON, M. HERMELIN and F. FAUDOT, ibid. A134 (1991) 1380.Google Scholar
  10. 10.
    Z. L. WANG, J. F. M. WESTENDROP and F. W. SARIS, Nucl. Instrum. Methods, 209–210 (1983) 115.Google Scholar
  11. 11.
    G. GLADYSZEWSKI, PH. GOUDEAU, A. NAUDON, CH. JAOUEN and J. PACAUD, Mater. Lett. 12 (1992) 419.Google Scholar
  12. 12.
    J. IVKOV, T. CAR, N. RADIĆ and B. BABIĆ Solid State Commun. 88 (1993) 633.Google Scholar
  13. 13.
    B. GRŽETA, N. RADIĆ, D. GRACIN and T. DOŠLIĆ, Mater. Sci. Forum 133–136 (1993) 913.Google Scholar
  14. 14.
    B. GRŽETA, N. RADIĆ, D. GRACIN and T. DOŠLIĆ and T. CAR, J. Non-Cryst. Solids 170 (1994) 101.Google Scholar
  15. 15.
    J. A. THORNTON, J. Vac. Sci. Technol. 11 (1974) 666.Google Scholar
  16. 16.
    P. PETROFF, T. T. SHENG, A. K. SINHA, G. A. ROZGONYI and F. B. ALEXANDER, J. Appl. Phys. 44 (1973) 2545.Google Scholar
  17. 17.
    A. M. HAGHIRI-GOSNET, F. R. LADAN, C. MAYEAUX and H. LAUNOIS, J. Vac. Sci. Technol. A7 (1989) 2663.Google Scholar
  18. 18.
    B. JÖNSONN and S. HOGMARK, Thin Solid Films, 114 (1984) 257.Google Scholar
  19. 19.
    P. J. BURNETT and D. S. RICKERBY, ibid. 148 (1987) 41.Google Scholar
  20. 20.
    D. LEBOUVIER, P. GILORMINI and E. FELDER, ibid. 172 (1989) 227.Google Scholar
  21. 21.
    I. MANIKA and J. MANIKS, ibid. 208 (1992) 223.Google Scholar
  22. 22.
    H. O'NEILL, “Hardness measurement of metals and alloys” (Chapman & Hall, London, 2nd Edn, 1967) p. 110.Google Scholar
  23. 23.
    F. M. D'HEURLE, Metall. Trans. 1 (1970) 725.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • N. Radić
    • 1
  • M. Stubicar
    • 2
  1. 1.Department of Materials ScienceRuđer Bosković InstituteZagrebCroatia
  2. 2.Department of Physics, Faculty of SciencesUniversity of ZagrebZagrebCroatia

Personalised recommendations