, Volume 463, Issue 1–3, pp 133–140 | Cite as

Selective feeding by the aquatic oligochaete Tubifex tubifex (Tubificidae, Clitellata)

  • Pilar Rodriguez
  • Maite Martinez-Madrid
  • Jesús Angel Arrate
  • Enrique Navarro


The particle size distribution of faecal pellets produced by the tubificid worm Tubifex tubifex in laboratory culture, was measured with a Coulter® Multisizer. The faecal material from worms cultured in a range of sediments was composed of particles with a mean diameter of less than 63 μm, and only a few isolated larger particles were found by microscopic analysis. This suggests that this species actively selects the silt-clay fraction, avoiding larger sand particles. A more detailed analysis of faeces revealed that about 75%, by volume, was composed of particles with a mean diameter < 25μm, and the mode was < 10μm. T. tubifex fed selectively on the organic rich particles of the sediment, and this feeding was independent of particle size. Measurement of the organic content of faeces (measured as % loss on ignition) showed that they had a consistently higher organic content than the sediment, considered as whole sediments or the <63 μm sieved fraction. On the basis of these results, we hypothesise that this species exhibits two levels of selectivity in its feeding behaviour. Thus selection is primarily based on particle size, avoiding the ingestion of sand particles and also, on the preferential selection of particles associated with organic material, within the fine (silt-clay) fraction of the sediment.

Feeding biology feeding selection tubificids Tubifex faeces 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brinkhurst, R. O., 1974. Factors mediating interspecific aggregation of tubificid Oligochaeta. J. Fish. Res. Bd Can. 31: 460–462.Google Scholar
  2. Brinkhurst, R. O., 1999. Retrospect and prospects: reflexions on forty years of study of aquatic oligochaetes. In Healy, B. M., T. B. Reynoldson & K. A. Coates (eds), Aquatic Oligochaetes. Proceedings of the 7th International Symposium on Aquatic Oligochaetes. Presque isle, 18–22 August 1997. Hydrobiologia 406: 9–19.Google Scholar
  3. Brinkhurst, R. O. & M. J. Austin, 1979. Assimilation by Aquatic Oligochaeta. Int. Rev. ges. Hydrobiol. 64: 245–250.Google Scholar
  4. Brinkhurst, R. O. & K. E. Chua, 1969. Preliminary investigation of the exploitation of some potential nutritional resources by three sympatric tubificid oligochaetes. J. Fish. Res. Bd Can. 26: 12659–2668.Google Scholar
  5. Brinkhurst, R. O., K. E. Chua & N. K. Kaushik, 1972. Interspecific interactions and selective feeding by tubificid oligochaetes. Limnol. Oceanogr. 17: 122–133.Google Scholar
  6. Coler, R. A., H. B. Gunner & B. M. Zuckermann, 1968. Selective feeding of tubificids on bacteria. Nature 216: 1143–1144.Google Scholar
  7. Davis, R. B., 1974. Tubificids alter profiles of redox potential and pH in profundal lake sediments. Limnol. Oceanogr. 19: 466–488.Google Scholar
  8. Egeler Ph., J. Römbke, M. Meller, T. Knacker, C. Franke, G. Studinger & R. Nagel, 1997. Bioaccumulation of Lindane and Hexachlorobenzene by tubificid sludgeworms (Oligochaeta) under standardized laboratory conditions. Chemosphere 35: 835–852.CrossRefGoogle Scholar
  9. Juget, J., 1979. La texture granulometrique des sediments et le regime alimentaire des oligochètes limnicoles. Hydrobiologia 65: 145–154.Google Scholar
  10. Kikuchi, E. & Y. Kurihara, 1977. In vitro studies on the effects of tubificids on the biological, chemical and physical characteristics of submerged ricefield soil and overlying water. Oikos 29: 348–357.Google Scholar
  11. Leppänen, M., 1995. The role of feeding behaviour in bioaccumulation of organic chemicals in benthic organisms. Ann. Zool. Fenn. 32: 247–255.Google Scholar
  12. Martinez-Madrid, M., P. Rodriguez, J. I. Perez-Iglesias & E. Navarro, 1999. Sediment toxicity Bioassays for assessment of contaminated sites in the Nervion River (Northern Spain). 2. Tubifex tubifex reproduction sediment bioassay. Ecotoxicology 8: 111–124.Google Scholar
  13. Matisoff G., X. S. Wang & P. L. McCall, 1999. Biological redistribution of lake sediments by tubificid oligochaetes: Branchiura sowerbyi and Limnodrilus hoffmeisteri / Tubifex tubifex. J. Great Lakes Res. 25: 205–219.Google Scholar
  14. Milbrink, G., 1993. Evidence for mutualistic interactions in freshwater oligochaetes communities. Oikos 68: 317–322.Google Scholar
  15. Mudroch, A. & J. M. Azcue, 1995. Manual of Aquatic Sediment Sampling. CRC Press, Boca Raton: 219 pp.Google Scholar
  16. Reynoldson, T. B., K. E. Day, C. Clarke & D. Milani, 1994. The effect of indigenous animals on chronic endpoints in freshwater sediment toxicity tests. Envir. Toxicol. Chem. 13: 973–977.Google Scholar
  17. Tevesz M. J. S., F. M. Soster & P. L. McCall, 1980. The effects of size-selective feeding by oligochaetes on the physical properties of river sediments. Journal of Sedimentary Petrology 50: 561–568.Google Scholar
  18. Wagner, G., 1968. Zur Beziehung zwischen der Besiedlungsdischte von Tubificiden und dem Nahrungsangebot im Sediment. Int. Rev. ges. Hydrobiol. 53: 715–721.Google Scholar
  19. Wavre, H. & R. O. Brinkhurst, 1971. Interactions between some tubificid oligochaete and bacteria found in the sediments of Toronto Harbour, Ontario. J. Fish. Res. Bd Can. 28: 335–341.Google Scholar
  20. Zar, J. H., 1996. Biostatistical Analysis. Prentice Hall, New Jersey: 121 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Pilar Rodriguez
    • 1
  • Maite Martinez-Madrid
    • 1
  • Jesús Angel Arrate
    • 1
  • Enrique Navarro
    • 1
  1. 1.Departamento de Biología Animal y Genética, Facultad de CienciasUniversidad del País VascoBilbaoSpain

Personalised recommendations