Journal of Statistical Physics

, Volume 106, Issue 1–2, pp 375–384 | Cite as

A Note on the Quantum Widom–Rowlison Model

  • D. Ioffe


Using the renormalization methods we show that the symmetry breaking in the quantum Widom–Rowlison model of particles obeying Boltzmann statistics occurs at any value of the inverse temperature β>0 once the activity of the particles is sufficiently large.

continuous systems quantum Widom–Rowlison model path integrals phase transition renormalization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Ruelle, Existence of phase transitions in a continuous classical system, Phys. Rev. Lett. 27:1040-1041 (1971).Google Scholar
  2. 2.
    J. T. Chayes, L. Chayes, and R. Kotecký, The analysis of the Widom-Rowlison model by stochastic geometric methods, Comm. Math. Phys. 172:551-569 (1995).Google Scholar
  3. 3.
    J. Lebowitz, A. E. Mazel, and E. Presutti, Liquid-vapor phase transition for systems with finite range interactions, J. Statist. Phys. 94:955-1025 (1999).Google Scholar
  4. 4.
    M. Cassandro and P. Picco, Existence of Phase Transition in Continuous Quantum Systems, preprint (2000).Google Scholar
  5. 5.
    B. Widom and J. S. Rowlison, J. Chem. Phys. 52:1670 (1970).Google Scholar
  6. 6.
    J. Ginibre, Some applications of functional integration in statistical mechanics, in Statistical Mechanics and Field Theory, C. De Witt and R. Stora, eds. (Gordon and Breach, New York/London/Paris, 1970).Google Scholar
  7. 7.
    O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics 2, 2nd edn. (Texts and Monographs in Physics, Springer, 1996).Google Scholar
  8. 8.
    H. Kesten and Y. Zhang, The probability of a large finite cluster in supercritical Bernoulli percolation, Ann. Prob. 18(2):537-555 (1990).Google Scholar
  9. 9.
    J.-D. Deuschel and A. Pisztora, Surface order large deviations for high-density percolation, Probab. Theory Related Fields 104(4):467-482 (1996).Google Scholar
  10. 10.
    M. Aizenman, J. T. Chayes, L. Chayes, and C. M. Newman, Discontinuity of the magnetization in one-dimensional 1/|xy|2 Ising and Potts models, J. Statist. Phys. 50(1/2):1-40 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • D. Ioffe
    • 1
  1. 1.Faculty of Industrial EngineeringTechnionHaifaIsrael

Personalised recommendations