Journal of Thermal Analysis and Calorimetry

, Volume 66, Issue 3, pp 699–715 | Cite as

The Polymorphism of Glycine. Thermochemical and structural aspects

  • G. L. Perlovich
  • L. K. Hansen
  • A. Bauer-Brandl


X-ray, DSC and solution calorimetric investigations were carried out for α-, β- and γ-modifications of glycine. Particular attention was paid to kinetic and thermochemical aspects of γ- → α-phase transition. The temperature of this phase transition turned out to be sensitive to a) conditions under which the crystals of the γ-modification were grown, b) tempering of crystals c) form (geometry) of crystals. Kinetics of this phase transition of single crystals of γ-phase in rhomboedric form can be described by the equation for two-dimension nuclei growth, whereas for crystals of triangle geometry the equation for three dimension growth is valid. On the basis of energy parameters describing growth of α-form in γ- →α-phase transition, the kind of structure defects, which are responsible for this phase transition, was estimated. Taking into account the ΔsolHm, the absolute values of the lattice energies of the investigated polymorphs indescending order are follows: γ->α->β-modification. The obtained results are discussed with respect to the peculiarity of the crystal lattice structures, particularly the network of hydrogen bonds. The β-modification of glycine is monotropically related to the other forms, whereas γ-and α-polymorphs are enantiotropically-related phases.

crystal structure enthalpies of solution enthalpy of phase transition glicine kinetics of phase transition monotropic and enantiotropic phases phase transition polymorphism single crystal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Bernal, Z. Krist., 78 (1931) 363.Google Scholar
  2. 2.
    J. Hengstenberg and F. V. Lenel, Z. Krist., 77 (1931) 424.Google Scholar
  3. 3.
    G. Albrecht and R. B. Corey, J. Am. Chem. Soc., 61 (1939) 1087.CrossRefGoogle Scholar
  4. 4.
    R. E. Marsh, Acta Cryst., 11 (1959) 654.CrossRefGoogle Scholar
  5. 5.
    P. G. Jönsson and Å. Kvick, Acta Cryst., B28 (1972) 1827.Google Scholar
  6. 6.
    E. Fischer, Ber. Deut. Chem. Ges., 38 (1905) 2917.Google Scholar
  7. 7.
    Y. Iitaka, Acta Cryst., 13 (1960) 35.CrossRefGoogle Scholar
  8. 8.
    Y. Iitaka, Proc. Jap. Acad., 30 (1954) 109.Google Scholar
  9. 9.
    Y. Iitaka, Acta Cryst., 11 (1958) 225.CrossRefGoogle Scholar
  10. 10.
    Y. Iitaka, Acta Cryst., 14 (1961) 1.CrossRefGoogle Scholar
  11. 11.
    Å. Kvick, Acta Cryst., B36 (1980) 115.Google Scholar
  12. 12.
    V. P. Vasilíev, V. A. Borodin and S. B. Kopnyshev, Russ. J. Phys. Chem., (Engl. Transl.), 65 (1991) 29.Google Scholar
  13. 13.
    S. N. Ngauv, R. Sabbah and M. Laffitte, Thermochim. Acta, 20 (1977) 371.CrossRefGoogle Scholar
  14. 14.
    T. Tsuzuki, D. O. Harper and H. Hunt, J. Phys. Chem., 62 (1958) 1594.CrossRefGoogle Scholar
  15. 15.
    V. G. Badelin, O. V. Kulikov, V. S. Batagin, E. Udzig, A. Zielenkiewicz, W. Zielenkiewicz and G. A. Krestov, Thermochim. Acta, 169 (1990) 81.CrossRefGoogle Scholar
  16. 16.
    C. H. Spink and I. Wadsö, J. Chem. Thermodynam., 7 (1975) 561.Google Scholar
  17. 17.
    J. O. Hutchens, A. G. Cole and J. W. Stout, J. Am. Chem. Soc., 82 (1960) 4813.CrossRefGoogle Scholar
  18. 18.
    C. G. De Kruif, J. Voogd and J. C. A. Offringa, J. Chem. Thermodynam., 11 (1979) 651.CrossRefGoogle Scholar
  19. 19.
    H. J. Svec and D. D. Clyde, J. Chem. Eng. Data, 10 (1965) 151.CrossRefGoogle Scholar
  20. 20.
    S. Tagaki, H. Chihara and S. Seki, Bull. Chem. Soc. Jap., 32 (1959) 84.Google Scholar
  21. 21.
    J. D. Cox and G. Pilcher, Thermochemistry of organic and organometallic compounds, Academic Press, London 1970, p. 643.Google Scholar
  22. 22.
    G. M. Sheldrick (1997a). SHELXS-97 Program for the solution of crystal structures, University of Göttingen, Germany.Google Scholar
  23. 23.
    G. M. Sheldrick (1997b). SHELXS-97/2 Program for the refinement of crystal structures, University of Göttingen, Germany.Google Scholar
  24. 24.
    M. N. Burnett and C. K. Jonson (1996). ORTEP III: Oak ridge thermal ellipsoid plot program for crystal structure illustration, Oak ridge national laboratory report ORNL-6895.Google Scholar
  25. 25.
    P. McArdle (1993). Oscail Software-Windows Software for crystallography from National University of Ireland, Galway-Version 7d, J. Appl. Cryst., 26 (1993) 752.CrossRefGoogle Scholar
  26. 26.
    K. Balasubramanian, R. S. Krishnan and Y. Iitaka, Bull. Chem. Soc. Jap., 35 (1962) 1303.Google Scholar
  27. 27.
    A. Burger and R. Ramberger, Microchim. Acta, II (1979) 259.Google Scholar
  28. 28.
    B. W. Low and F.M. Richards, J. Am. Chem. Soc., 74 (1952) 1660.CrossRefGoogle Scholar
  29. 29.
    T. Curtius, J. Prakt. Chem., 26 (1882) 158.CrossRefGoogle Scholar
  30. 30.
    A. Burger and R. Ramberger, Microchim. Acta, II (1979) 273.CrossRefGoogle Scholar
  31. 31.
    G. L. Perlovich and A. Bauer-Brandl, J. Therm. Anal. Cal., 63 (2001) 653.CrossRefGoogle Scholar
  32. 32.
    J. Šesták, Thermophysical properties of solids. Their measurements and theoretical thermal analysis. Moscow, Mir 1987, p. 456.Google Scholar
  33. 33.
    C. E. Birchenhall, In: Reactivity of Solids, Elsevier, Amsterdam 1960, p. 24.Google Scholar
  34. 34.
    W. E. Wallace, W. F. Offutt and A. L. Robinson, J. Am. Chem. Soc., 65 (1943) 347.CrossRefGoogle Scholar
  35. 35.
    R. M. Ginde and A. S. Myerson, J. Cryst. Growth, 116 (1992) 41.CrossRefGoogle Scholar
  36. 36.
    J.-P. Legros and Å. Kvick, Acta Cryst., B36 (1980) 3052.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • G. L. Perlovich
    • 1
    • 2
  • L. K. Hansen
    • 3
  • A. Bauer-Brandl
    • 1
  1. 1.Institute for Pharmacy, BreivikaUniversity of TromsøTromsøNorway
  2. 2.Institute of Solution ChemistryRussian Academy of SciencesIvanovoRussia
  3. 3.Department of Chemistry, BreivikaUniversity of TromsøTromsøNorway

Personalised recommendations