Biochemistry (Moscow)

, Volume 66, Issue 11, pp 1210–1219

Non-Isomerizable Artificial Pigments: Implications for the Primary Light-Induced Events in Bacteriorhodopsin

  • A. Aharoni
  • B. Hou
  • N. Friedman
  • M. Ottolenghi
  • I. Rousso
  • S. Ruhman
  • M. Sheves
  • T. Ye
  • Q. Zhong
Article

Abstract

The primary events in the photosynthetic retinal protein bacteriorhodopsin (bR) are reviewed in light of photophysical and photochemical experiments with artificial bR in which the native retinal polyene is replaced by a variety of chromophores. Focus is on retinals in which the “critical” C13=C14 bond is locked with respect to isomerization by a rigid ring structure. Other systems include retinal oxime and non-isomerizable dyes noncovalently residing in the binding site. The early photophysical events are analyzed in view of recent pump–probe experiments with sub-picosecond time resolution comparing the behavior of bR pigments with those of model protonated Schiff bases in solution. An additional approach is based on the light-induced cleavage of the protonated Schiff base bond that links retinal to the protein by reacting with hydroxylamine. Also described are EPR experiments monitoring reduction and oxidation reactions of a spin label covalently attached to various protein sites. It is concluded that in bR the initial relaxation out of the Franck–Condon (FC) state does not involve sub-stantial C13=C14 torsional motion and is considerably catalyzed by the protein matrix. Prior to the decay of the relaxed fluorescent state (FS or I state), the protein is activated via a mechanism that does not require double bond isomerization. Most plausibly, it is a result of charge delocalization in the excited state of the polyene (or other) chromophores. More generally, it is concluded that proteins and other macromolecules may undergo structural changes (that may affect their chemical reactivity) following optical excitation of an appropriately (covalently or non-covalently) bound chromophore. Possible relations between the light-induced changes due to charge delocalization, and those associated with C13=C14 isomerization (that are at the basis of the bR photocycle), are discussed. It is suggested that the two effects may couple at a certain stage of the photocycle, and it is the combination of the two that drives the cross-membrane proton pump mechanism.

bacteriorhodopsin retinal isomerization primary processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Ottolenghi, M., and Sheves, M. (eds.) (1995) The Photophysics and Photochemistry of Retinal Proteins. Isr. J. Chem., 35, 193–515.Google Scholar
  2. 2.
    Lanyi, J. (ed.) (2000) Biochim. Biophys. Acta Bioenerg., 1460, 1–239.Google Scholar
  3. 3.
    Haupt, U., Tittor, J., and Oesterhelt, D. (1999) Ann. Rev. Biophys. Biomol. Struct., 21, 367–399.Google Scholar
  4. 4.
    Kochendoerfer, G. G., and Mathies, R. A. (1995) Isr. J. Chem., 35, 211–226.Google Scholar
  5. 5.
    Stuart, J. A., and Birge, R. R. (1996) Biomembranes, 2A, 33–139.Google Scholar
  6. 6.
    Rosenfeld, T., Honig, B., Ottolenghi, M., Hurley, J., and Ebrey, T. G. (1977) Pure Appl. Chem., 49, 341–351.Google Scholar
  7. 7.
    Hurley, J., Ebrey, T. G., Honig, B., and Ottolenghi, M. (1977) Nature (London), 270, 540–542.Google Scholar
  8. 8.
    Sharkov, S., Pakulev, A., Chekalin, S., and Matveetz, Y. (1985) Biochim. Biophys. Acta, 808, 94–102.Google Scholar
  9. 9.
    Mathies, R. A., Brito-Cruz, C. H., Pollard, T. W., and Shank, C. V. (1988) Science, 240, 777–779.Google Scholar
  10. 10.
    Dobler, J., Zinth, W., Kaiser, K., and Oesterhelt, D. (1988) Chem. Phys., 144, 215–220.Google Scholar
  11. 11.
    Kobayashi, T., Terauchi, M., Kouyama, T., Yoshizawa, M., and Taiji, M. (1990) SPIE, 1403, 407–416.Google Scholar
  12. 12.
    Kobayashi, T., Kim, M., Taiji, M., Iwasa, T., Nakagawa, M., and Tsuda, M. (1998) J. Phys. Chem. B., 102, 272–280.Google Scholar
  13. 13.
    Gai, F., Hasson, H. C., McDonald Kooper, J., and Anfinrud, P. A. (1998) Science, 279, 1886–1891.Google Scholar
  14. 14.
    Arlt, T., Schmidt, S., Zinth, W., Haupts, U., and Oesterhelt, D. (1995) Chem. Phys. Lett., 241, 559–565.Google Scholar
  15. 15.
    Kandori, H., Yoshihara, K., Tomioka, H., and Sasabe, H. (1992) J. Phys. Chem., 96, 6066–6071.Google Scholar
  16. 16.
    Loppnow, G. R., and Mathies, R. A. (1988) Biophys. J., 54, 35–43.Google Scholar
  17. 17.
    Palings, I., Pardoen, J. A., van den Berg, E., Winkel, C., Lugetenburg, J., and Mathies, R. A. (1987) Biochemistry, 26, 2544–2556.Google Scholar
  18. 18.
    Hasson, K. C., Gai, F., and Anfinrud, P. A. (1996) Proc. Natl. Acad. Sci. USA, 93, 16124–16129.Google Scholar
  19. 19.
    Humphrey, W., Lu, H., Logunov, I., Werner, H., and Schulten, K. (1998) Biophys. J., 75, 1689–1699.Google Scholar
  20. 20.
    Gonzalez-Luque, R., Garavelli, M., Bernardi, F., Merchan, M., Robb, M., and Olivucci, M. (2000) Proc. Natl. Acad. Sci. USA, 17, 9379–9384.Google Scholar
  21. 21.
    Salem, L., and Bruckmann, P. (1975) Nature (London), 258, 526–529.Google Scholar
  22. 22.
    Lewis, A. (1978) Proc. Natl. Acad. Sci. USA, 75, 543–547.Google Scholar
  23. 23.
    Xu, D., Martin, D., and Schulten, K. (1996) Biophys. J., 70, 453–460.Google Scholar
  24. 24.
    Ottolenghi, M., and Sheves, M. (1989) J. Membr. Biol., 112, 193–212.Google Scholar
  25. 25.
    Nakanishi, K., and Crouch, R. (1995) J. Isr. Chem., 35, 253–272.Google Scholar
  26. 26.
    Haran, G., Wynne, K., Xie, A., He, Q., Chance, M., and Hochstasser, R. M. (1996) Chem. Phys. Lett., 26, 389–395.Google Scholar
  27. 27.
    Gai, G., McDonald, P. A., and Anfinrud, P. A. (1997) J. Am. Chem. Soc., 119, 6201–6202.Google Scholar
  28. 28.
    Zhong, Q., Ruhman, S., Ottolenghi, M., Sheves, M., Friedman, N., Atkinson, G. H., and Delaney, J. K. (1996) J. Am. Chem. Soc., 118, 12828–12829.Google Scholar
  29. 29.
    Ye, T., Friedman, N., Gat, Y., Atkinson, G., Sheves, M., Ottolenghi, M., and Ruhman, S. (1999) J. Phys. Chem. B, 103, 5122–5130.Google Scholar
  30. 30.
    Akiyama, R., Yoshimori, A., Kakitani, T., Imamoto, Y., Shichida, Y., and Hatamo, Y. (1997) J. Phys. Chem. A, 101, 412–417.Google Scholar
  31. 31.
    Myers, A., Harris, R., and Mathies, R. (1983) J. Phys. Chem., 79, 603–613.Google Scholar
  32. 32.
    Garavelli, M., Celani, P., Bernardi, F., Robb, M. A., and Olivucci, M. (1997) J. Am. Chem. Soc., 119, 6891–6901.Google Scholar
  33. 33.
    Song, L., and El-Sayed, M. (1998) J. Am. Chem. Soc., 120, 8889–8890.Google Scholar
  34. 34.
    Govindjee, R., Balashov, V. S., and Ebrey, T. (1990) Biophys. J., 58, 597–608.Google Scholar
  35. 35.
    Balashov, S. P., Karneeva, N. V., Litvin, F. F., and Sineshchekov, V. A. (1987) in Retinal Proteins (Ovchinnikov, Yu. A., ed.) VNU Science Press, Utrecht, The Netherlands, pp. 505–517.Google Scholar
  36. 36.
    Dexheimer, S. L., Wang, Q., Peteanu, L. A., Pollard, W. T., Mathies, R. A., and Shank, C. V. (1992) Chem. Phys. Lett., 188, 61–67.Google Scholar
  37. 37.
    Wang, Q., Schoenlein, R., Peteanu, L., Mathies R., and Shank, C. (1994) Science, 266, 422–424.Google Scholar
  38. 38.
    Althaus, T., Weisfeld, R., Lohrmann, M., and Stockburger, M. (1995) Isr. J. Chem., 35, 227–251.Google Scholar
  39. 39.
    Ye, T., Gershgoren, E., Friedman, N., Ottolenghi, M., Sheves, M., and Ruhman, S. (1999) Chem Phys., 314, 429–434.Google Scholar
  40. 40.
    Garavelli, M., Negri, F., and Olivucci, M. (1999) J. Am. Chem. Soc., 121, 1023–1029.Google Scholar
  41. 41.
    Kandori, H., and Sasabe, H. (1993) Chem. Phys. Lett., 216, 126–132.Google Scholar
  42. 42.
    Kandori, H., Katsuta, Y., Ito, M., and Sasabe, H. (1995) J. Am. Chem. Soc., 117, 2669–2670.Google Scholar
  43. 43.
    Logunov, S. L., Song, L., and El-Sayed, M. A. (1996) J. Phys. Chem., 100, 18586–18591.Google Scholar
  44. 44.
    Hamm, P., Zurek, M., Röschinger, T., Patzelt, H., Oesterhelt, D., and Zinth, W. (1996) Chem. Phys. Lett., 263, 613–621.Google Scholar
  45. 45.
    Hou, B., Friedman, N., Ruhman, S., Sheves, M., and Ottolenghi, M. (2001) J. Phys. Chem., in press.Google Scholar
  46. 46.
    Rousso, I., Khachatryan, E., Gat, Y., Brodsky, I., Ottolenghi, M., Sheves, M., and Lewis, A. (1997) Proc. Natl. Acad. Sci. USA, 94, 7937–7941.Google Scholar
  47. 47.
    Losi, A., Michler, J., Gartner, W., and Braslavsky, S. (2000) Photochem. Photobiol., 72, 590–597.Google Scholar
  48. 48.
    Oesterhelt, D., Meetzen, M., and Schumann, L. (1973) Eur. J. Biochem., 40, 453–463.Google Scholar
  49. 49.
    Oesterhelt, D., Shumann, L., and Gruber, H. (1974) FEBS Lett., 44, 257–261.Google Scholar
  50. 50.
    Subramaniam, S., Marti, T., Rösselet, S. J., Rothschild, K. J., and Khorana, H. G. (1991) Proc. Natl. Acad. Sci. USA, 88, 2583–2587. Google Scholar
  51. 51.
    Rousso, I., Gat, Y., Lewis, A., Sheves, M., and Ottolenghi, M. (1998) Biophys. J., 75, 413–417.Google Scholar
  52. 52.
    Aharoni, A., Weiner, L., Ottolenghi, M., and Sheves, M. (2000) J. Biol. Chem., 275, 21010–21016.Google Scholar
  53. 53.
    Feix, Y. B., and King, C. (1998) Spin-Labeling, Plenum Press, New York, pp. 251–281.Google Scholar
  54. 54.
    Hubbell, W., Gross, A., Langen, R., and Leitzow, M. (1998) Curr. Opin. Struct. Biol., 8, 649–656.Google Scholar
  55. 55.
    Altenbach, C., Fitsch, L., Khorana, H. G., and Hubbell, W. (1989) Biochemistry, 28, 7806–7812.Google Scholar
  56. 56.
    Altenbach, C., Marti, T., Khorana, H. G., and Hubbell, W. (1990) Science, 248, 1088–1092.Google Scholar
  57. 57.
    Steinhoff, H., Mollaaghababa, R., Altenbach, C., Hideg, K., Krebs, M., Khorana, H. G., and Hubbell, W. (1994) Science, 266, 105–107.Google Scholar
  58. 58.
    Hubbell, W., and Altenbach, C. (1994) Curr. Opin. Struct. Biol., 4, 566–573.Google Scholar
  59. 59.
    Thorgeirsson, T., Xiao, W., Brown, L., Needleman, R., Lanyi, J., and Shin, Y. (1997) J. Mol. Biol., 273, 951–957.Google Scholar
  60. 60.
    Rink, T., Riesk, J., Oesterhelt, D., Gerwert, K., and Steinhoff, H. (1997) Biophys. J., 73, 983–993.Google Scholar
  61. 61.
    Pfeiffer, M., Rink, T., Gerwert, K., Oesterhelt, D., and Steinhoff, H. (1999) J. Mol. Biol., 275, 163–171.Google Scholar
  62. 62.
    Aharoni, A., Weiner, L., Ottolenghi M., and Sheves, M. (2001) J. Am. Chem. Soc., 123, 6612–6616.Google Scholar
  63. 63.
    Huang, J., Chen, Z., and Lewis, A. (1989) J. Phys. Chem., 93, 3314–3320.Google Scholar
  64. 64.
    Birge, R., and Zheng, X. (1990) J. Chem. Phys., 94, 7178–7179.Google Scholar
  65. 65.
    Clays, K., Hendrick, E., Triest, M., Verhiest, T., Persoons, A., Dehu, C., and Bredas, J. (1993) Science, 262, 1419–1422.Google Scholar
  66. 66.
    Birge, R., and Zhang, C. (1990) J. Chem. Phys., 92, 7178–7195.Google Scholar
  67. 67.
    Atkinson, G. H., Ujj, L., and Zhou, Y. (2000) J. Phys. Chem., 104, 4130–4139.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • A. Aharoni
    • 1
  • B. Hou
    • 2
  • N. Friedman
    • 1
  • M. Ottolenghi
    • 2
  • I. Rousso
    • 1
  • S. Ruhman
    • 2
  • M. Sheves
    • 1
  • T. Ye
    • 2
  • Q. Zhong
    • 2
  1. 1.Department of Organic ChemistryThe Weizmann Institute of ScienceIsrael
  2. 2.Department of Physical ChemistryThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations