Journal of Statistical Physics

, Volume 106, Issue 1–2, pp 125–145 | Cite as

Degrees of Freedom of a Time Series

  • M. Eugenia Mera
  • Manuel Morán


We give a formal proof that if f is a smooth dynamics on a d-dimensional smooth manifold and μ is an ergodic and exact dimensional measure with Hausdorff dimension dim μ>d−1, then the number d of degrees of freedom of the dynamics can be recovered from the observation of an orbit. We implement, with this purpose, an algorithm based on the analysis of the microstructure of μ. We show how a correct estimation of d permits the computation of the Liapunov spectrum with a high accuracy avoiding the issue of the spurious exponents.

degrees of freedom dimension embedology singular value decomposition Liapunov exponents 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. S. Young, Ergod. Th. & Dynam. Sys. 2:109 (1982).Google Scholar
  2. 2.
    L. Barreira, Y. Pesin, and J. Schmeling, Ann. of Math. 149:755 (1999).Google Scholar
  3. 3.
    J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57:617 (1985).Google Scholar
  4. 4.
    M. E. Mera and M. Morán, Ergodic Theory Dynam. Systems 20:531 (2000).Google Scholar
  5. 5.
    N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, Phys. Rev. Lett. 45:712 (1980).Google Scholar
  6. 6.
    F. Takens, in Dynamical Systems and Turbulence, D. A. Rang and L. S. Young, eds., Lectures Notes in Mathematics, Vol. 898, p. 396 (1981).Google Scholar
  7. 7.
    T. Sauer, J. A. York, and M. Casdagli, J. Statist. Phys. 65:579 (1992).Google Scholar
  8. 8.
    R. Cawley and Guan-Hsong Hsu, Phys. Rev. A 46:3057 (1992).Google Scholar
  9. 9.
    H. Froehling, J. P. Crutchfield, D. Farmer, N. H. Packard, and R. Saw, Physica D 3:605 (1981).Google Scholar
  10. 10.
    D. S. Broomhead, R. Jones, and G. P. King, J. Phys. A Math. Gen. 20:L563 (1987).Google Scholar
  11. 11.
    E. R. Pike, Computational Systems. Natural and Artificial, H. Haken, ed., Vol. 86 (Springer-Verlag, Berlín, 1987).Google Scholar
  12. 12.
    P. King, R. Jones, and D. S Broomhead, Nucl. Phys. B 2:379 (1987)Google Scholar
  13. 13.
    A. I. Mees, P. E. Rapp, and L. S. Jennings, Phys. Rev. A 36:340 (1987).Google Scholar
  14. 14.
    D. S. Broomhead and G. P. King, Physica D 20:217 (1986).Google Scholar
  15. 15.
    A. Pasamante, T. Hediger, and M. Gollub, Phys. Rev. A 39:3640 (1989).Google Scholar
  16. 16.
    T. Hediger, A. Pasamante, and M. E. Farrell, Phys. Rev. A 41:5325 (1990).Google Scholar
  17. 17.
    T. M. Buzug, J. von Stamm, and G. Pfister, Phys. Lett. A 202:183 (1995).Google Scholar
  18. 18.
    P. Walters, An Introduction to Ergodic Theory, (Springer-Verlag, 1982).Google Scholar
  19. 19.
    P. Mattila, Geometry of Sets and Measures in Euclidean Spaces. Fractals andRectifiability (Cambridge University Press, 1995).Google Scholar
  20. 20.
    M. E. Mera and M. Morán, J. Math. Anal. Applic. 235:454 (1999).Google Scholar
  21. 21.
    J.-P. Eckmann, S. O. Kamphorst, D. Ruelle, and S. Ciliberto, Phys. Rev. A 34:4971 (1986).Google Scholar
  22. 22.
    R. Brown, P. Bryan, and H. D. I. Abarbanel, Phys. Rev. A 43:2787 (1991).Google Scholar
  23. 23.
    U. Parlitz, Int. J. Bif. Chaos 2:155 (1992).Google Scholar
  24. 24.
    A. G. Darbyshire and D. S. Broomhead, Physica D 89:287 (1996).Google Scholar
  25. 25.
    R. Stoop and J. Parisi, Physica D 50:89 (1991).Google Scholar
  26. 26.
    M. E. Mera and M. Morán, Degree of differentiability of an observed dynamics, working paper.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • M. Eugenia Mera
    • 1
  • Manuel Morán
    • 1
  1. 1.Departamento de Análisis Económico IUniversidad ComplutenseMadridSpain

Personalised recommendations