Geometriae Dedicata

, Volume 88, Issue 1–3, pp 211–237 | Cite as

On Kerckhoff Minima and Pleating Loci for Quasi-Fuchsian Groups

  • Caroline Series
Article

Abstract

We show how Kerckhoff's results on minima of length functions on Teichmüller space can be used to analyse the possible bending loci of the boundary of the convex hull for quasi-Fuchsian groups near to the Fuchsian locus.

bending quasi-Fuchsian Kerckhoff minima pleating locus Fenchel Nielsen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abikoff, W.: The Real Analytic Theory of Teichmüller Space, Lecture Notes in Maths. 820, Springer, New York, 1976.Google Scholar
  2. 2.
    Bonahon, F. and Otal, J-P.: Laminations mesurées de plissage des variétés hyperboliques de dimension 3, Preprint, 2001.Google Scholar
  3. 3.
    Canary, R.D., Epstein, D.B.A. and Green, P.: Notes on notes of Thurston, In: D.B.A. Epstein (ed), Analytical and Geometric Aspects of Hyperbolic Space, London Math. Soc. Lecture Notes Ser.111,Campbridge Univ.Press, 1987, pp. 3–92.Google Scholar
  4. 4.
    Diaz, R. and Series, C.: Examples of pleating varieties for the twice punctured torus, Warwick preprint.Google Scholar
  5. 5.
    Epstein, D.B.A. and Marden, A.: Convex hulls in hyperbolic space,a theorem of Sullivan,and easured pleated surfaces, In: D.B.A. Epstein (ed), Analytical and Geometric Aspects of Hyperbolic Space, London Math. Soc. Lecture Notes Ser.111, Cambridge Univ.Press, 1987, pp. 112–253.Google Scholar
  6. 6.
    Fahti, A., Laudenbach, P. and Poénaru, V.: Travaux de Thurston sur les surfaces, Astérisque 66–67, SociétéMathéatique de France, 1979.Google Scholar
  7. 7.
    Fenchel, W.: Elementary Geometry in Hyperbolic Space, De Gruyter Stud. Math. 11, De Gruyter, New York, 1989.Google Scholar
  8. 8.
    Imayoshi, Y. and Taniguchi, M.: An Introduction to Teichmüller spaces, Springer, Tokyo 1992.Google Scholar
  9. 9.
    Keen, L. and Series, C.: Pleating coordinates for the Maskit embedding of the Teichmüller space of punctured tori, Topology 32(4) (1993), 719–749.Google Scholar
  10. 10.
    Keen, L. and Series, C.: Continuity of convex hull boundaries, Pacific J. Math. 168(1) (1995), 183–206.Google Scholar
  11. 11.
    Keen, L. and Series, C.: How to bend pairs of punctured tori. In: J. Dodziuk and L. Keen (eds), Lipa's Legacy, Contep. Math. 211, Aer. Math. Soc. Providence, 1997, pp.359–388.Google Scholar
  12. 12.
    Keen, L. and Series, C.: Pleating invariants for punctured torus groups,Warwick preprint, 1998.Google Scholar
  13. 13.
    Kerckhoff, S.: The Nielsen realization problem, Ann. of Math. 117(2) (1983), 235–265.Google Scholar
  14. 14.
    Kerckhoff, S.: Earthquakes are analytic, Comment. Math. Helv. 60 (1985), 17–30.Google Scholar
  15. 15.
    Kerckhoff, S.: Lines of Minima in Teichmüller space, Duke Math. J. 65 (1992), 187–213.Google Scholar
  16. 16.
    Kourouniotis, C.: Complex length coordinates for quasi-Fuchsian groups, Mathematika, 41(1) (1994), 173–188.Google Scholar
  17. 17.
    Marden, A.: The geometry of ¢nitely generated Kleinian groups, Ann. Math. 99 (1974), 607–639.Google Scholar
  18. 18.
    Otal, J.P.: Le théorème d' hyperbolisation pour les variétés fibrées de dimension 3, Astérisque 235, SociétéMath.France,(1996).Google Scholar
  19. 19.
    Otal,J.P.: Sur le coeur convexe d' une variétéhyperbolique de dimension 3,Preprint.Google Scholar
  20. 20.
    Papadopoulos, A.: Geometric intersection functions and Hamiltonian flows on the space of Measured Foliations on a surface, Pacific J. Math. 124 (1986), 375–402.Google Scholar
  21. 21.
    Penner, R.C. with Harer, J.: Combinatorics of Train Tracks, Ann. Math. Stud. 125, Princeton Univ. Press, 1992.Google Scholar
  22. 22.
    Series, C.: An extension of Wolpert's derivative formula, Pacific J. Math. (2000), 223–239.Google Scholar
  23. 23.
    Series, C.: Lectures on pleating coordinates for once punctured tori, In: Hyperbolic Spaces and Related Topics, RIMS Kokyuroku 1104, Kyoto, 1999,pp. 30–108.Google Scholar
  24. 24.
    Tan, S.P.: Complex Fenchel-Nielsen coordinates for quasi-Fuchsian structures, Internat. J. Math. 5(2),(1994), 239–251.Google Scholar
  25. 25.
    Thurston, W.: Earthquakes in two-di ensional hyperbolic geometry, In: D.B.A. Epstein (ed), Low-dimensional Topology and Kleinian Groups, London Math. Soc., Lecture Notes Ser.112,Cambridge Univ. Press, 1987, pp. 91–112.Google Scholar
  26. 26.
    Thurston, W.: Geometry and topology of three-manifolds, Princeton lecture notes, 1979.Google Scholar
  27. 27.
    Wolpert, S.: The Fenchel Nielsen deformation, Ann. Math. 115(3) (1982), 501–528.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Caroline Series
    • 1
  1. 1.Mathematics InstituteWarwick UniversityCoventryU.K.

Personalised recommendations