Advertisement

Hydrobiologia

, Volume 453, Issue 1, pp 133–141 | Cite as

Size paradigms in copepod communities: a re-examination

  • R. R. Hopcroft
  • J. C. Roff
  • F. P. Chavez
Article

Abstract

A longstanding view in zooplankton research has been that large copepods are the important members of most communities. It has also been thought that warm water communities contain smaller copepods than temperate waters, with cold polar waters containing large species. We present copepod size spectra from detailed microscopic analysis of tropical and temperate locations, to challenge these paradigms. While the size range of copepods does increase with decreasing temperature and with depth into oceanic waters, the fundamental attributes of the size spectra are similar. Small copepods and early developmental stages dominate all communities.

copepod size spectra sampling bias small copepods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bigelow, H. B., 1924 [1926]. Plankton of the offshore waters of the Gulf of Maine. Bull. U.S. Bur. Fish. 40: 1–509.Google Scholar
  2. Bigelow, H. B. & M. Sears, 1939. Studies of the waters of the continental shelf, Cape Cod to Chesapeake Bay. III. A volumetric study of the zooplankton. Memoirs Mus. comp. Zool. 54: 181–378.Google Scholar
  3. Boudreau, P. R., L. M. Dickie & S. R. Kerr, 1991. Body-size spectra of production and biomass as system-level indicators of ecological dynamics. J. theor. Biol. 152: 329–339.Google Scholar
  4. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28–35.Google Scholar
  5. Calbet, A., M. R. Landry & R. D. Scheinberg. 2000. Copepod grazing in a subtropical bay: species-specific responses to a midsummer increase in nanoplankton standing stock. Mar. Ecol. Prog. Ser. 193: 75–84.Google Scholar
  6. Calder, W. A., Jr., 1996. Size, function, and life history. Cover Publications, Minneola, New York: 431p.Google Scholar
  7. Chisholm, L. A. & J. C. Roff, 1990a. Abundances, growth rates and production of tropical neritic copepods off Kingston, Jamaica. Mar. Biol. 106: 79–89.Google Scholar
  8. Chisholm, L. A. & J. C. Roff, 1990b. Size-weight relationships and biomass of tropical neritic copepods off Kingston, Jamaica. Mar. Biol. 106: 71–77.Google Scholar
  9. Chisholm, S.W., 1992. Phytoplankton size. In Falkowski, P. G. & A. D. Woodhead (eds), Primary Productivity and Biogeochemical Cycles in the Sea. Plenum: 213–237.Google Scholar
  10. Cooney, R. T., 1986. Zooplankton. In Hood, D. W. & S. T. Zimmerman (eds), The Gulf of Alaska: Physical Environment and Biological Resources. U.S. Government Printing Office, Washington: 285–300.Google Scholar
  11. Dagg, M., T. Cowles, T. Whitledge, S. Smith, S. Howe & D. Judkins, 1980. Grazing and excretion by zooplankton in the Peru upwelling system during April 1977. Deep-Sea Res. 27A: 43–59.Google Scholar
  12. Evans, F., 1977. Seasonal density and production estimates of the commoner planktonic copepods of Northumberland coastal waters. Estuar. coast. mar. Sci. 5: 223–241.Google Scholar
  13. Fenchel, T., 1974. Intrinsic rate of natural increase: the relationship with body size. Oecologia 14: 317–326.Google Scholar
  14. Fransz, H. G., 1988. Vernal abundance, structure and development of epipelagic copepod populations of the eastern Weddell Sea (Antarctica). Polar Biol. 9: 107–114.Google Scholar
  15. Fransz, H. G. & S. R. Gonzalez, 1997. Latitudinal metazoan plankton zones in the Antarctic Circumpolar Current along 6 W during austral spring 1992. Deep-Sea Res. II. 44: 395–414.Google Scholar
  16. Fulton, R. S., III, 1984. Predation, production and the organization of an estuarine copepod community. J. Plankton Res. 6: 399–415.Google Scholar
  17. Hayward, T. L., 1996. Long-term change in the North Pacific Ocean: a consideration of some important issues. CalCOFI Rep. 37: 41–44.Google Scholar
  18. Hernroth, L., 1987. Sampling and filtration efficiency of two commonly used plankton nets. A comparative study of the Nansen net and the UNESCO WP2 net. J. Plankton Res. 9: 719–728.Google Scholar
  19. Hirst, A. G. & R. S. Lampitt, 1998. Towards a global model of in situ weight-specific growth in marine planktonic copepods. Mar. Biol. 132: 247–257.Google Scholar
  20. Hopcroft, R. R. & J. C. Roff, 1998a. Zooplankton growth rates: the influence of female size and resources on egg production of tropical marine copepods. Mar. Biol. 132: 79–86.Google Scholar
  21. Hopcroft, R. R. & J. C. Roff, 1998b. Zooplankton growth rates: the influence of size in nauplii of tropical marine copepods. Mar. Biol. 132: 87–96.Google Scholar
  22. Hopcroft, R. R., J. C. Roff & D. Lombard, 1998a. Production of tropical copepods in Kingston Harbour, Jamaica: the importance of small species. Mar. Biol. 130: 593–604.Google Scholar
  23. Hopcroft, R. R., J. C. Roff, M. K. Webber & J. D. S. Witt, 1998b. Zooplankton growth rates: the influence of size and resources in tropical marine copepodites. Mar. Biol. 132: 67–77.Google Scholar
  24. Huntley, M. E. & M. D. G. Lopez, 1992. Temperature-dependent production of marine copepods: a global synthesis. Am. Nat. 140: 201–242.Google Scholar
  25. Landry, M. R., 1983. The development of marine calanoid copepods with comment on the isochronal rule. Limnol. Oceanogr. 28: 614–624.Google Scholar
  26. Legendre, L. & J. Michaud, 1998. Flux of biogenic carbon in the oceans: size-dependent regulation by pelagic food webs. Mar. Ecol. Prog. Ser. 164: 1–11.Google Scholar
  27. Longhurst, A., 1984. Importance of measuring rates and fluxes in marine ecosystems. In Fasham, M. J. R. (ed.), Flows of Energy in Marine Ecosystems. Plenum Press, London: 3–22.Google Scholar
  28. Mackas, D. L. & A. Tsuda, 1999. Mesozooplankton in the eastern and western subarctic Pacific: community structure, seasonal life histories and interannual variability. Prog. Oceanogr. 43: 335–363.Google Scholar
  29. Malone, T. C., 1980. Algal size. In Morris, I. (ed.), The Physiological Ecology of Phytoplankton. Blackwell, London: 433–463.Google Scholar
  30. Marshall, S. M. & A. P. Orr, 1955. The biology of amarine copepod, Calanus finmarchicus (Gunnerus). Oliver & Boyd, London: 188 pp.Google Scholar
  31. McGowan, J. A., D. B. Chelton & A. Conversi, 1996. Plankton patterns, climate and change in the California Current. CalCOFI Rep. 37: 45–68.Google Scholar
  32. Meise, C. J. & J. O'Reilly, 1996. Spatial and seasonal patterns in abundance and aggregation of Calanus finmarchicus in the Gulf of Maine and Georges Bank: 1977- 1987. Deep-Sea Res. II. 43: 1473–1501.Google Scholar
  33. Miller, C. B., B. W. Frost, H. P. Batchelder, M. J. Clemons & R. E. Conway, 1984. Life histories of large, grazing copepods in a subarctic ocean gyre: Neocalanus plumchrus, Neocalanus cristatus and Eucalanus bungii in the Northeast Pacific. Prog. Oceanogr. 13: 201–243.Google Scholar
  34. Ohman, M. D. & J. R. Wilkinson, 1989. Comparative standing stocks of mesozooplankton and macrozooplankton in the southern sector of the California Current system. Fish. Bull. 87: 967–976.Google Scholar
  35. Paffenhöfer, G. A., 1983. Vertical zooplankton distribution on the northeastern Florida shelf and its relation to temperature and food abundance. J. Plankton Res. 5: 15–33.Google Scholar
  36. Peters, R. H., 1983. The ecological implications of body size. Cambridge University Press, New York: 329 pp.Google Scholar
  37. Rodriguez, J. & M. M. Mullin, 1986. Relation between biomass and body weight of plankton in a steady state oceanic ecosystem. Limnol. Oceanogr. 31: 361–370.Google Scholar
  38. Roff, J. C. & R. R. Hopcroft, 1986. High precision microcomputer based measuring system for ecological research. Can. J. Fish. aquat. Sci. 43: 2044–2048.Google Scholar
  39. Roff, J. C. & M. J. Tremblay, 1984. Singular, mass-specific P/B ratios cannot be used to estimate copepod production. Can. J. Fish. aquat. Sci. 41, 830–833.Google Scholar
  40. Roff, J. C., J. T. Turner, M. K. Webber & R. R. Hopcroft, 1995. Bacterivory by tropical copepod nauplii: extent and possible significance. Aquat. microb. Ecol. 9: 165–175.Google Scholar
  41. Roman, M. R., H. G. Dam, A. L. Gauzens, J. L. Urban-Rich, D. G. Foley & T. D. Dickey, 1995. Zooplankton variability on the equator at 140 W during JGOFS EqPac study. Deep-Sea Res. II. 42: 673–693.Google Scholar
  42. Runge, J. A., 1985. Relationship of egg production of Calanus pacificus to seasonal changes in phytoplankton availability in Puget Sound, Washington. Limnol. Oceanogr. 30: 382–396.Google Scholar
  43. Sheldon, R. W., W. H. Sutcliffe & A. Prakash, 1972. The size distribution of particles in the ocean. Limnol. Oceanogr. 17: 327–340.Google Scholar
  44. Tremblay, M. J. & J. C. Roff, 1983. Community gradients in the Scotian Shelf zooplankton. Can. J. Fish. aquat. Sci. 40: 598–611.Google Scholar
  45. Turner, J. T., 1982. The annual cycle of zooplankton in a Long Island estuary. Estuaries 5: 261–274.Google Scholar
  46. Turner, J. T., 1991. Zooplankton feeding ecology: do co-occurring copepods compete for the same food? Rev. aquat. Sci. 5: 101–195.Google Scholar
  47. Turner, J. T., 1994. Planktonic copepods of Boston Harbor; Massachusetts Bay and Cape Cod Bay, 1992. Hydrobiologia 292/293: 405–413.Google Scholar
  48. Turner, J. T. & J. C. Roff, 1995. Trophic levels and the trophospecies in marine plankton: lessons from the microbial food web. Mar. microb. Food Webs 7: 225–248.Google Scholar
  49. Turner, J. T. & P. A. Tester, 1989a. Zooplankton feeding ecology: copepod grazing during an expatriate red tide. In Cosper, E. M., V. M. Bricelj & E. J. Carpenter (eds), Novel Phytoplankton Blooms. Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms. Springer-Verlag. Coast. estuar. Stud. 35: 359–374.Google Scholar
  50. Turner, J. T. & P. A. Tester, 1989b. Zooplankton feeding ecology: nonselective grazing by the copepods Acartia tonsa Dana, Centropages velificatus de Oliveira, and Eucalanus pileatus Giesbrecht in the plume of the Mississippi River. J. exp. mar. Biol. Ecol. 126: 21–43.Google Scholar
  51. UNESCO, 1968. Zooplankton sampling. UNESCO, Paris: 174 pp.Google Scholar
  52. Uye, S., 1994. Replacement of large copepods by small ones with eutrophication of embayments: cause and consequence. Hydrobiologia 292/293: 513–519.Google Scholar
  53. Van Guelpen, L., D. F. Markle & D. J. Duggan, 1982. An evaluation of accuracy, precision and speed of several zooplankton subsampling techniques. J. Cons. int. Exp. Mer 40: 226–236.Google Scholar
  54. Verity, P. G., D. K. Stoecker, M. E. Sieracki & J. R. Nelson, 1993. Grazing, growth and mortality of microzooplankton during the 1989 North Atlantic spring bloom at 47 N, 18 W. Deep-Sea Res. I. 40: 1793–1814.Google Scholar
  55. Vidal, J., 1980a. Physioecology of zooplankton. I. Effects of phytoplankton concentration, temperature and body size on the growth rate of Calanus pacificus and Pseudocalanus sp. Mar. Biol. 56: 111–134.Google Scholar
  56. Vidal, J., 1980b. Physioecology of zooplankton. II. Effects of phytoplankton concentration, temperature and body size on the development and molting rates of Calanus pacificus and Pseudocalanus sp. Mar. Biol. 56: 135–146.Google Scholar
  57. Webber, M. K. & J. C. Roff, 1995a. Annual biomass and production of the oceanic copepod community off Discovery Bay, Jamaica. Mar. Biol. 123: 481–495.Google Scholar
  58. Webber, M. K. & J. C. Roff, 1995b. Annual structure of the copepod community and its associated pelagic environment off Discovery Bay, Jamaica. Mar. Biol. 123: 467–479.Google Scholar
  59. Wickstead, J. H., 1963. Estimates of total zooplankton in the Zanzibar area of the Indian Ocean with a comparison of the results with two different nets. Proc. zool. Soc. Lond. 141: 577–608.Google Scholar
  60. Zhou, M. & M. E. Huntley, 1997. Population dynamics theory of plankton based on biomass spectra. Mar. Ecol. Prog. Ser. 159: 61–73.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • R. R. Hopcroft
    • 1
    • 2
    • 3
  • J. C. Roff
    • 4
  • F. P. Chavez
    • 5
  1. 1.Center for Marine Science and TechnologyUniversity of Massachusetts DartmouthNew BedfordU.S.A.
  2. 2.Dept. of ZoologyUniversity of GuelphGuelphCanada
  3. 3.Monterey Bay Aquarium Research InstituteMoss LandingU.S.A.
  4. 4.Dept. of ZoologyUniversity of GuelphGuelphCanada
  5. 5.Monterey Bay Aquarium Research InstituteMoss LandingU.S.A.

Personalised recommendations