, Volume 460, Issue 1–3, pp 147–156 | Cite as

Seasonal and interannual cycles of endemic cholera in Bengal 1891–1940 in relation to climate and geography

  • Menno Jan Bouma
  • Mercedes Pascual


Unravelling the epidemiology of cholera has been one of the most elusive problems in tropical medicine. The early contest between `contagionists' and `localists' in the last century finds a modern equivalent in the on-going debate on whether the epidemiology of cholera has significant environmental determinants. This study investigates the role of climate and geography on seasonality and interannual variations of cholera, using historical mortality data between 1891 and 1940 from 24 districts of Bengal. The coastal districts exhibit a bi-annual seasonal cycle, as previously described for cholera in this region, but with a dominant peak in the spring. Spring mortality, particularly in the coastal region, shows significant correlations (r = 0.50, p < 0.001) with sea surface temperatures in the Bay of Bengal. During post-Niño years (a total of 13 events) when coastal sea temperatures rise, spring epidemics with excess mortality (over 15 000 deaths on average) occur, resulting in a shift away from the usual seasonal pattern. Significant correlations (r = 0.58, p < 0.001) between sea temperatures in the Pacific (an El Niño index) and cholera's spring deaths, and a peak at a frequency of approximately 1 /4.2 years in the power spectrum, support the influence of this climatic forcing. Cholera's winter peak, dominant further away from the estuary, appears less consistently associated with water temperatures in the Bay of Bengal, and accounts for most of the interannual variation in the geographical spread of cholera in Bengal. The differences in our results for spring and winter suggest the possibility of different aquatic reservoirs for the pathogen. As sea water temperature can only explain part of the historical variability in cholera deaths, and the seasonality of temperature is similar to that of other environmental parameters, further studies to elucidate causal pathways are warranted. Here, we provide geographical and climatological support for the hypothesis that environmental factors are important in the dynamics of endemic cholera.

cholera cycles climate influences seasonality interannual variability El Niño Southern Oscillation Sea Surface Temperature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Colwell, R. R., 1996. Global climate and infectious disease: The cholera paradigm. Science 274: 2025–2031.Google Scholar
  2. Colwell, R. R., J. Kaper & S. W. Joseph, 1977. Vibrio cholerae, Vibrio parahaemolyticus and other vibrios: Occurrence and distribution in Chesapeake Bay. Science 198: 394–6.Google Scholar
  3. Bloomfield, P., 1976. Fourier Analysis of Time Series: An Introduction. John Wiley and Sons, New York.Google Scholar
  4. Bryden, J. L. 1871. Epidemic cholera in the Bengal Presidency. Note on the epidemic connection of the cholera of Madras and Bombay with the cholera epidemics of the Bengal Presidency. Calcutta, Office of the superintendent of Government printing.Google Scholar
  5. Epstein, P. R., T. E. Ford & R. R. Colwell, 1993. Cholera and the environment. The Lancet 342: 1216.Google Scholar
  6. Feachem, R. G. 1982. Environmental aspects of cholera epidemiology. III Transmission and control. Trop. Dis. Bull. 79: 1–47.Google Scholar
  7. Franco, A. A., A. D. Fix, A. Prada, E. Paredes, J. C. Palomino, A. C. Wright, J. A. Johnson, R. McCarter, H. Guerra & G. Morris Jr., 1997. Cholera in Lima, Peru, Correlates with prior isolation of Vibrio cholerae from the environment. Am.J. Epidem. 146: 1067–1075.Google Scholar
  8. Glass, R. I., S. Becker, M. I. Huq, B. J. Stoll, M. U. Khan, M. H. Merson, J. V. Lee & R. E. Black, 1982. Endemic cholera in rural Bangladesh, 1966–1980. Am. J. Epidem. 116: 959–70.Google Scholar
  9. Hirsh, A. 1883. Geographical and Historical Pathology. Volume I. Acute Infective Diseases. London: The Sydenham Society.Google Scholar
  10. Huq, A., E. B. Small, P. A. West, M. I. Huq, R. R. Colwell, 1983. Ecological relationships between Vibrio cholerae and planktonic crustaceans copepods. Appl. Envir. Microbiol. 45: 275–83.Google Scholar
  11. Huq, A., P. A. West, E. B. Small, M. I. Huq & R. R. Colwell, 1984. Influence of water temperature, salinity, and pH on survival and growth of toxigenic Vibrio cholerae Serovar 01 associated with live copepods in laboratory microcosms. Applied and Envir. Microb. 48: 420–424.Google Scholar
  12. Islam, M. S. & K. M. S. Aziz, 1981. Association of vibrios with some hydrophytic plants. Bangladesh J. Microbiol. 1: 70–2.Google Scholar
  13. Islam, M. S., B. S. Drasar & D. J. Bradley, 1984. Survival of Vibrio cholerae 01 in artificial aquatic ecosystems. J. Med. Microbiol. 18: viiGoogle Scholar
  14. Islam, M. S., B. S. Drasar & R. B. Sack, 1994. Probable role of bluegreen algae in maintaining endemicity and seasonality of cholera in Bangladesh: a hypothesis. J. Diarrhoeal Dis. Res. 12: 245–256Google Scholar
  15. Koch, R., 1884. An address on cholera and its bacillus. Brit. Med. J. 2: 403–407.Google Scholar
  16. Lobitz, B., L. Beck, A. Huq, B. Wood, G. Fuchs, A. S. G. Faruque & R. Colwell, 2000. Proc.Natl.Acad Sci. U.S.A. 97: 1438.Google Scholar
  17. Mahalanabis, D., A. S. G. Faruque, M. J. Albert, M. A. Salam & S. S. Hoque, 1994. An epidemic of cholera due to Vibrio cholerae 0139 in Dhaka, Bangladesh: clinical and epidemiological features. Epidemiol.Infect. 112: 463–71.Google Scholar
  18. McCormack, W. M., W. H. Mosley, M. Fahimuddin & A. S. Benenson, 1969. Endemic cholera in rural East Pakistan. Am. J. Epidem. 89: 393–404.Google Scholar
  19. Mosley, W. H. & M. Khan, 1979. Cholera epidemiology-some environmental aspects. Prog. Water Techn. Vol 11: 309–16.Google Scholar
  20. Oppenheimer, J. R., M. G. Ahmad, A. Huq, K. A. Haque, A. K. M. A. Alam, K. M. S. Aziz, S. Ali & A. S. M. Haque, 1978. Limnological studies on three ponds in Dacca, Bangladesh. Bangladesh J. Fisher. 1: 1–28.Google Scholar
  21. Pascual, M., X. Rodo, S. P. Ellner, R. R. Colwell & M. J. Bouma, 2000. Cholera dynamics and El Niño Southern Oscillation. Science 289: 1766–9.Google Scholar
  22. Miller, C. J., B. S. Drasar & R. G. Feachem, 1982. Cholera and estuarine salinity in Calcutta and London. Lancet,i, 1216–1218.Google Scholar
  23. Pascual, M., X. Rodo, S. P. Ellner, R. R. Colwell & M. J. Bouma, 2000. Cholera dynamics and El Niño Southern Oscillation. Science 289: 1766–9.Google Scholar
  24. Pollitzer, R., 1959. Cholera. Monograph. WHO. Rasmusson, E. M. & T. H. Carpenter, 1983. The relationship between Eastern Equatorial Pacific sea surface temperatures and rainfall over India and Sri Lanka. Monthly Weather Review 111: 517–28.Google Scholar
  25. Rogers, R. C., R. G. C. J. Cuffe, Y. M. Cossins, D. M. Murphy & A. T. C. Bourke, 1980. The Queensland cholera incident of 1977. 2. The epidemiological investigation. Bull. WHO 58: 665–669.Google Scholar
  26. Ropelewski, C. F. & M. S. Halpert, 1987. Global and region scale precipitation patterns associated with El Niño Southern Oscillation. Monthly Weather Review 115: 1606–26.Google Scholar
  27. Ross, W. C. & K. N. Bagchi, 1919. The seasonal variation in the reaction and hardness of river water in India. Ind. J. Med. Res. 6: 423–429.Google Scholar
  28. Russell, A. J. H., 1925.The epidemiology of cholera. Indian J. Med. Res. 13: 427–39.Google Scholar
  29. Samadi, A. R., M. K. Chowdhury, M. I. Huq & M. U. Khan, 1983. Seasonality of classical and El Tor cholera in Dhaka, Bangladesh 17 year trends. Trans. Roy. Soc. Trop. Med. Hyg. 77: 853–6.Google Scholar
  30. Sanitary Commissioner for Bengal Reports and Bengal Public Health Reports, 1891–1942. Bengal Secretariat Press, Calcutta and Bengal Government Press, Alipore.Google Scholar
  31. Siddique, A. K., A. H. Baqui, Abu Eusof, K. Haider, M. A. Hossain, I. Bashir & Zaman K. 1991. Survival of classic cholera in Bangladesh. Lancet 337: 1125–1127.Google Scholar
  32. Tamplin, M. L., A. L. Gauzens, A. Huq, D. A. Sack & R. R. Colwell, 1990. Attachment of Vibrio cholerae serogroup 01 to zooplankton and phytoplakton of Bangladesh waters. Appl. Envir. Microbiol. 56: 1977–80.Google Scholar
  33. Venables, W. N. & B. D. Ripley, 1997. Modern applied statistics with S-Plus (second edition). Springer Verlag NY.Google Scholar
  34. WHO, 1990. Potential Health Effects of Climate Change. WHO/PEP/90.10 WHO, Geneva.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Menno Jan Bouma
    • 1
  • Mercedes Pascual
    • 2
  1. 1.Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical MedicineUniversity of LondonLondonU.K.
  2. 2.Center of Marine BiotechnologyUniversity of Maryland Biotechnology InstituteBaltimoreU.S.A.

Personalised recommendations