Geometriae Dedicata

, Volume 88, Issue 1–3, pp 199–210

Pointed Wiedersehen Metrics on Exotic Spheres and Diffeomorphisms of S6

  • Carlos E. Durán
Article

Abstract

Using a Kaluza–Klein-type procedure, an explicit metric h on an exotic sphere Σ7 is constructed, satisfying the Wiedersehen condition at a set of points diffeomorphic to S1. The formulas for the geodesics allows the writing down of formulas for an explicit degree 1 diffeomorphism σ: S6S6 that is not isotopic to the identity.

closed geodesics exotic spheres exotic diffeomorphisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bérard-Bergery, L.: Quelques examples de variétés Riemanniennes homogènes oùtoutes les géodésiques issues d' un point sont fermées et de même longeour,suivis de quelques résultats sur leur topologie, Ann. Inst. Fourie 27(1) (1977), 231–249.Google Scholar
  2. 2.
    Besse, A.: Manifolds all of Whose Geodesics are Closed, Springer-Verlag, New York, 1984.Google Scholar
  3. 3.
    Bourguignon, J.P.: A mathematician 's visit to Kaluza-Klein theory, In: Conferen e on partial Differential Equations and Geometry,Torino, 1988, Rend. Sem. Mat. Univ. Politec.Torino 1989, Special Issue,1990, 143–163.Google Scholar
  4. 4.
    Coqueraux, R.and Jadcyzk, A.: Riemannian Geometry, Fibe Bundles, Kaluza-Klein Theories and all that..., World Scientific Lecture Notes in Phys.16, World Scientific, Singapore, 1988.Google Scholar
  5. 5.
    Gromoll, D. and Meyer, W.: An exotic sphere with non-negative sectional urvature, Ann. of Math. 96(2) (1972), 413–443.Google Scholar
  6. 6.
    Schmutz Schaller, P.: Geometry of Riemann surfaces based on losed geodesics, Bull. Ame. Math. Soc. 35(3) (1998), 193–214.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Carlos E. Durán
    • 1
  1. 1.IVIC-MatemáticasCaracasVenezuela

Personalised recommendations