Journal of Dynamical and Control Systems

, Volume 7, Issue 4, pp 473–500 | Cite as

Uniform Estimation of Sub-Riemannian Balls

  • Frédéric Jean
Article

Abstract

A fundamental result of sub-Riemannian geometry, the ball-box theorem, states that small sub-Riemannian balls look like boxes \([ - \varepsilon ^{\omega _1 } ,\varepsilon ^{\omega _1 } ]\) × ··· × \([ - \varepsilon ^{\omega _n } ,\varepsilon ^{\omega _n } ]\) in privileged coordinates. This description is not uniform in general. Thus, it does allow us neither to compute Hausdorff measures and dimensions nor to prove the convergence of certain motion planning algorithms.

In this paper, we present a description of the shape of small sub-Riemannian balls depending uniformly on their center and their radius. This result is a generalization of the ball-box theorem. The proof is based on the one hand on a lifting method, which replaces the sub-Riemannian manifold by an extended equiregular one (where the ball-box theorem is uniform); and on the other hand, it based on an estimate of sets defined by families of vector fields, which allows us to project the balls in suitable coordinates.

Uniform distance estimate lifting method ball-box theorem sub-Riemannian geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Abraham and J. E. Marsden, Foundations of mechanics. Addison-Wesley, 1978.Google Scholar
  2. 2.
    A. A. Agrachev, R. V. Gamkrelidze, and A. V. Sarychev, Local invariants of smooth control systems. Acta Appl. Math. 14 (1989), 191–237.Google Scholar
  3. 3.
    A. A. Agrachev and A. V. Sarychev, Filtrations of a Lie algebra of vector fields and nilpotent approximations of control systems. Dokl. Akad. Nauk SSSR 285 (1987), 777–781. English translation: Soviet Math. Dokl. 36 (1988), 104–108.Google Scholar
  4. 4.
    A. Bellaïche, The tangent space in sub-Riemannian geometry. In: Sub-Riemannian Geometry, Progress in Mathematics (A. Bellaïche and J.-J. Risler, Eds.), Birkhäuser, 1996.Google Scholar
  5. 5.
    N. Bourbaki, Groupes et Algèbres de Lie. Hermann, Paris, 1972.Google Scholar
  6. 6.
    W. L. Chow, Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung. Math. Ann. 117 (1940), 98–115.Google Scholar
  7. 7.
    C. Godbillon, Géométrie Différentielle et Mécanique Analytique. Hermann, Paris, 1969.Google Scholar
  8. 8.
    N. Goodman, Nilpotent Lie groups. In: Lecture Notes in Math. Vol. 562, Springer Verlag, 1976.Google Scholar
  9. 9.
    M. Gromov, Carnot-Carathéodory spaces seen from within. In: Sub-Riemannian Geometry, Progress in Mathematics (A. Bellaïche and J.-J. Risler, Eds.), Birkhäuser, 1996.Google Scholar
  10. 10.
    H. Hermes, Nilpotent and high-order approximations of vector field systems. SIAM Rev. 33 (1991), No. 2, 238–264.Google Scholar
  11. 11.
    F. Jean Entropy and complexity of a path in sub-Riemannian geometry. In: Technical Report, No. 331, ENSTA (1999).Google Scholar
  12. 12.
    _____, Complexity of nonholonomic motion planning. Internat. J. Control 74 (2001), No. 8, 776–782.Google Scholar
  13. 13.
    F. Jean, J-P. Laumond, G. Oriolo, and M. Venditelli, Nonhomogeneous nilpotent approximations for systems with singularities. En préparation, 2001.Google Scholar
  14. 14.
    I. Kupka, Géométrie sous-riemannienne. In: Séminaire N. Bourbaki, No. 817 (1996).Google Scholar
  15. 15.
    G. A. Margulis and G. D. Mostow, Some remarks on the definition of tangent cones in a Carnot-Carathéodory space. J. d'Analyse Mathématique 80 (2000), 299–317.Google Scholar
  16. 16.
    J. Mitchell, On Carnot-Carathéodory metrics. J. Differential Geom. 21 (1985), 35–45.Google Scholar
  17. 17.
    T. Nagano, Linear differential systems with singularities and an application to transitive Lie algebras. J. Math. Soc. Japan 18 (1966), 398–404.Google Scholar
  18. 18.
    A. Nagel, E. M. Stein, and S. Wainger, Metrics defined by vector fields. Acta Math. 155 (1985), 103–147.Google Scholar
  19. 19.
    P. Pansu, Une inégalité isopérimétrique sur le groupe d'Heisenberg. C.R. Acad. Sci. Paris 295 (1982), 127–130.Google Scholar
  20. 20.
    P. K. Rashevsky, Any two points of a totally nonholonomic space may be connected by an admissible line. (Russian) Uch. Zap. Ped. Inst. im. Liebknechta, Ser. Phys. Math. No. 2 (1938), 83–94.Google Scholar
  21. 21.
    C. Rockland, Intrinsic nilpotent approximations. Acta Appl. Math. 8 (1987), 213–270.Google Scholar
  22. 22.
    L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups. Acta Math. 137 (1976), 247–320.Google Scholar
  23. 23.
    G. Stefani, On local controllability of a scalar-input system. In: Theory and Appl. of Nonlinear Control Syst. (Lindquist Btionyrnes, Ed.), North Holland, Amsterdam (1986), 167–179.Google Scholar
  24. 24.
    H. J. Sussmann, An extension of theorem of Nagano on transitive Lie algebras. Proc. Amer. Math. Soc. 45 (1974), 349–356.Google Scholar
  25. 25.
    M. Venditelli, G. Oriolo, and J.-P. Laumond, Steering nonholonomic systems via nilpotent approximations: the general two-trailer system. In: IEEE Int. Conf. on Robotics and Automation (1999), 823–829.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Frédéric Jean
    • 1
  1. 1.Laboratoire de Mathématiques AppliquéesÉcole Nationale Supérieure de Techniques AvancéesParisFrance

Personalised recommendations