Advertisement

Hydrobiologia

, Volume 460, Issue 1–3, pp 157–164 | Cite as

Vibrio cholerae in recreational beach waters and tributaries of Southern California

  • Sunny C. Jiang
Article

Abstract

Vibrio cholerae is the causative agent of the severe dehydrating diarrheal disease cholera. This bacterium has been detected in many estuaries around the world and the United States. In this study we examine the abundance and distribution of V. cholerae in recreational beach waters and tributaries of Southern California. Water samples were taken from 11 beach locations adjacent to freshwater runoff sources between February 8th and March 1st, 1999. Water samples were also taken from rivers, creeks and coastal wetlands along the Southern California coast between May 19th and June 28th, 1999. In addition to the detection of V. cholerae, environmental parameters including temperature, salinity, coliphage counts, viable heterotrophic plate counts and total bacterial direct counts were also determined to understand the relationships between the presence of V. cholerae and environmental conditions. A direct colony hybridization method using an oligonucleotide probe specific for the 16S–23S intergenic spacer region of V. cholerae, detected V. cholerae in 3 of the 11 beach samples with the highest concentration (60.9 per liter) at the mouth of Malibu Lagoon. V. cholerae and coliphage were not correlated for beach samples, indicating that the presence of V. cholerae is independent of sewage pollution. V. cholerae were detected in all samples taken from rivers, creeks and wetlands of coastal Southern California where salinities were between 1 to 34 parts per thousand (ppt), but was not found at a freshwater sampling site in upper San Juan Creek. The highest density of V. cholerae was found in San Diego Creek with a concentration of 4.25×105 CFU/L. The geographical distribution of V. cholerae was inversely correlated with salinity. High concentrations of V. cholerae were more frequently detected in waters with lower (but above 0) salinity. The results of this study provide insight into the ecology of this aquatic species and are potentially important to the understanding of the epidemiology of cholera on a global scale.

Vibrio cholerae cholera colony hybridization intergenic spacer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beltran, P., G. Delgado, A. Navarro, F. Trujillo, R. K. Selander & A. Croavioto, 1999. Genetic diversity and population structure of Vibrio cholerae. J. Clin. Microbiol. 37: 581–590.Google Scholar
  2. Bik, E. M., A. E. Bunschoten, R. D. Gouw & F. R. Mooi, 1995. Genesis of the novel epidemic Vibrio cholerae O139 strain: evidence for horizontal transfer of genes involved in polysaccharide synthesis. EMBO J. 14: 209–216.Google Scholar
  3. Bradford, H. B., 1984. An epidemilogical study of V. cholerae in Louisana. In Colwell, R. R. (ed.), Vibrios in the Environment. John Wiley & Sons, Inc., New York: 59–72.Google Scholar
  4. Cholera Working Group, 1993. Large epidemic of cholera-like disease in Bangladesh caused by O139 synonym Bengal. Lancet 342: 387–390.Google Scholar
  5. Chun, J., A. Huq & R. R. Colwell, 1999. Analysis of 16S-23S rRNA intergenic spacer regions of Vibrio cholerae and Vibrio mimicus. Appl. environ. Micriobiol. 65: 2202–2208.Google Scholar
  6. Colwell, R. R., J. Kaper & S. W. Joseph, 1977. Vibrio cholerae, Vibrio parahaemolyticus, and other vibrios: occurrence and distribution in Chesapeake Bay. Science 198: 394–396.Google Scholar
  7. Colwell, R. R. & W.M. Spira, 1992. The ecology of Vibrio cholerae. In Barua, D. & W. B. Greenough (eds), Cholera. Plenum, New York: 107–127.Google Scholar
  8. Colwell, R. R., 1996. Global climate and infectious disease: the cholera paradigm. Science 274: 2025–2031.Google Scholar
  9. Dalsgaard, A., A. Forslund, H. F. Mortensen & T. Shimada, 1998. Ribotypes of clinical Vibrio cholerae non-O1 non-O139 strains in relation to O-serotypes. Epidemiol. Infect. 121: 535–545.Google Scholar
  10. Dalsgaard, A. M., J. Albert, D. N. Taylor, T. Shimada, R. Meza, O. Serichantalergs & P. Echeverria, 1995. Characterization of Vibrio cholerae non-O1 serogroups obtained from an outbreak of diarrhea in Lima, Peru. J. clin. Microbiol. 33: 2715–2722.Google Scholar
  11. Davey, G. R., J. K. Prendergast & M. J. Eyles, 1982. Detection of Vibrio cholerae in oyster, water and sediment from George's River. Food Techol. Aust. 34: 334–336.Google Scholar
  12. DePaola, A., M. W. Presnell, M. L. Motes, R. M. McPhearson, R. M. Twedt, R. E. Becker & S. Zywmo, 1983. Non-O1 Vibrio cholerae in shellfish, sediment and waters of the U.S. Gulf Coast. J. Food Prot. 46: 802–806.Google Scholar
  13. DePauola, A., M. W. Presnell, R. E. Becker, M. L. Motes, S. R. Zywmo, J. F. Musselman, J. Taylor & L. Williams, 1984. Distribution of Vibrio cholerae in Apalachicola Bay (Florida) estuary. J. Food Prot. 47: 549–553.Google Scholar
  14. Drasar, B. S. & B. D. Forrest, 1996. Cholera and the ecology of Vibrio cholerae. In Drasar, B. S. & B. D. Forrest (eds), Cholera and the ecology of Vibrio cholerae. Chapman and Hall Ltd., London, England, UK; New York, New York, USA: xxi+355.Google Scholar
  15. Faruque, S.M., M. J. Albert & J. J. Mekalanos, 1998. Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol. Molecul. Biol. Rev. 62: 1301–1314.Google Scholar
  16. Grim, C. J., I. N. G. Rivera, N. Choopun, J. Chun, A. Huq & R. R. Colwell, 2000. Quantification of Vibrio cholerae from aquatic ecosystems using an oligonucleotide probe. Abstracts of the General Meeting of the American Society for Microbiology. 100: 547.Google Scholar
  17. Heidelberg, J., 1997. Seasonal abundance in the bacterioplankton and zooplankton-attached populations of Bacteria, γ-subclass of the Proteobacteria, Vibrio/Photobacterium, Vibrio cholerae/ Vibrio mimicus, Vibrio vulnificus, and Vibrio cincinnatiensis. Ph.D. dissertation, Univ. of Maryland.Google Scholar
  18. Hood, M. A., G. E. Ness, G. E. Rodrick & N. J. Blake, 1983. Distribution of Vibrio cholerae in two Florida estuaries. Microb. Ecol. 9: 65–75.Google Scholar
  19. Jiang, S. C., J.M. Thurmond, S. L. Pichard & J. H. Paul, 1992. Concentration of microbial populations from aquatic environments by Vortex Flow Filtration. Mar. ecol. Prog. Ser. 80: 101–107.Google Scholar
  20. Jiang, S. C., V. Louis, N. Choopun, A. Sharama, A. Huq & R. R. Colwell, 2000. Genetic diversity of Vibrio cholerae in Chesapeake Bay determined by amplified fragment length polymorphism (AFLP). Appl. Environ. Microbiol. 66(1): 140–147.Google Scholar
  21. Jiang, S. C. & J. H. Paul, 1998. Gene transfer by transduction in the marine environment. Appl. environ. Microbiol. 64: 2780–7.Google Scholar
  22. Kaper, J. H. L., R. R. Colwell & S. W. Joseph, 1979. Ecology, serology, and enterotoxin production of Vibrio cholerae in Chesapeake Bay. Appl. environ. Microbiol. 37: 91–103.Google Scholar
  23. Karaolis, D. K., R. Lan & P. R. Reeves, 1995. The sixth and seventh cholera Pandemics are due to independent clones separately derived from environmental, nontoxigenic, non-O1 Vibrio cholerae. J. Bacteriol. 177: 3191–3198.Google Scholar
  24. Kaysner, C. A., C. Abeyta, Jr., M. M. Wekell, A. DePaola, Jr., R. F. Stott & J. M. Leitch, 1987. Incidence of Vibrio cholerae from estuaries of the United States west coast. Appl. environ. Microbiol. 53: 1344–1348.Google Scholar
  25. Kenyon, J. E., D. C. Gillies, D. R. Piexoto & B. Austin, 1983. Vibrio cholerae (non-O1) isolated from California coast waters. Appl. environ. Microbiol. 46: 1232–1233.Google Scholar
  26. Kenyon, J. E., D. R. Piexoto, B. Austin & D. C. Gillies, 1984. Seasonal variation in the numbers of Vibrio cholerae (non-O1) isolated from California coastal waters. Appl. Environ. Microbiol. 47: 1243–1245.Google Scholar
  27. Lennette, E. H., A. Balows, W. J. Hausler & H. J. Shadomy, 1985. Manual of Clinical Microbiology. 4th edn. American Society for Microbiology, Washington D.C.Google Scholar
  28. Mahon, B. E., E. D. Mintz, K. D. Greene, J. G. Wells & R. V. Tauxe, 1996. Reported cholera in the United States, 1992–1994: a reflection of global changes in cholera epidemiology. JAMA 276: 307–312.Google Scholar
  29. Morris, J. G. & R. E. Black, 1985. Cholera and other vibrios in the United States. New England J. Medicine 312: 343–350.Google Scholar
  30. Paul, J. H. & B. Myers, 1982. Fluorometric determination of DNA in aquatic microorganisms by use of Hoechst 33258. Appl. environ. Microbiol. 43: 1393–1399.Google Scholar
  31. Paul, J. H., J. B. Rose, S. C. Jiang, C. A. Kellogg & L. Dickson, 1993. Distribution of viral abundance in the reef environment of Key Largo, Florida. Appl. environ. microbiol. 59: 718–724.Google Scholar
  32. Popovic, T., C. Bopp, O. Olsvik & K. Wachsmuth, 1993. Epidemiological application of a standardized ribotype scheme for V. cholerae O1. J. Clin. Microbiol. 31: 2474–2482.Google Scholar
  33. Tauxe, R., L. Seminario. R. Tapia & M. Libel, 1994. The Latin American epidemic. In Wachsmuth I. K. P. A., Blacke & O. Olsvik (eds), Vibrio cholerae and cholera. Washington, DC: Am. Soc. Microbiol.Google Scholar
  34. Tison, D. L.,M. Nishuchi, R. J. Seidler & R. J. Siebeling, 1986. Isolation of non-O1 Vibrio cholerae serovars from Oregon coastal environments. Appl. environ. Microbiol. 51: 444–445.Google Scholar
  35. Waldor, M. K. & J. J. Mekalanos, 1996. Lysogenic conversion by a filamentous phage encoding cholera Toxin. Science 272: 1910–1914.Google Scholar
  36. World Health Organization, 1998. Weekly Epidemiological Record. 73: 201–208.Google Scholar
  37. Yamai, S., T. Okitsu, T. Shimada & Y. Yatsube, 1997. Distribution of serogroups of Vibrio cholerae non-O1 non-O139 with specific reference to their ability to produce cholera toxin, and addition of novel serogroups. J. Jap. Assoc. Infec. Diseases 71: 1037–1045.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Sunny C. Jiang
    • 1
  1. 1.Environmental Analysis and DesignUniversity of CaliforniaIrvineU.S.A.

Personalised recommendations