Biodiversity & Conservation

, Volume 10, Issue 12, pp 2153–2166

Bryophyte and vascular plant species richness in boreo-nemoral moist forests and mires

  • Nele Ingerpuu
  • Kai Vellak
  • Toomas Kukk
  • Meelis Pärtel


We compare species richness of bryophytes and vascular plants in Estonian moist forests and mires. The material was collected from two wetland nature reserves. Bryophyte and vascular plant species were recorded in 338 homogeneous stands of approximately 1 ha in nine forest and two mire types. Regional species pools for bryophytes and vascular plants were significantly correlated. The correlations between the species richnesses of bryophytes and vascular plants per stand were positive in all community types. The relative richnesses (local richness divided by the regional species pool size) were similar for bryophyte species and for vascular plant species. This shows that on larger scales, conservation of the communities rich in species of one taxonomic plant group, maintains also the species richness of the other. The minimum number of stands needed for the maintenance of the regional species pool of typical species for the every community type was calculated using the species richness accumulation curves. Less stands are needed to maintain the bryophyte species pools (300–5300 for bryophytes and 400–35 000 for vascular plants).

bryophytes conservation of species diversity species accumulation curve species pool vascular plants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ader A and Tammur E (1997) Alam-Pedja looduskaitseala [Alam-Pedja Nature Reserve]. Tallinna Raamatutrükikoda, Tallinn, EstoniaGoogle Scholar
  2. Allilender K (1999) Soode maa [Land of mires]. Eesti Loodus 10: 423–428Google Scholar
  3. Aude E and Lawesson JE (1998) Vegetation in Danish beech forests: the importance of soil, microclimate and management factors, evaluated by variation partitioning. Plant Ecology 134: 53–65Google Scholar
  4. Dony JG (1977) Species-area relationships in an area of intermediate size. Journal of Ecology 65: 475–484Google Scholar
  5. Dupré C (2000) How to determine a regional species pool: a study in two Swedish regions. Oikos 89: 128–136Google Scholar
  6. Eesti NSV floora I-XI [Flora of the Estonian S.S.R.] (1953–1984) Valgus, Tallinn, EstoniaGoogle Scholar
  7. Eriksson O (1993) The species-pool hypothesis and plant community diversity. Oikos 68: 371–374Google Scholar
  8. Fischer M and Stöcklin J (1997) Local extinctions of plants in remnants of extensively used calcareous grasslands 1950–1985. Conservation Biology 11: 727–737Google Scholar
  9. Giplin ME and Soulé ME (1986) Minimum viable populations: processes of species extinction. In: Soulé ME (ed) Conservation Biology: The Science of Scarcity and Diversity, pp 19–34. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  10. Glaser PH, Janssens JA and Siegel DI (1990) The response of vegetation to chemical and hydrological gradients in the Lost River peatland, northern Minnesota. Journal of Ecology 78: 1021–1048Google Scholar
  11. Gough LG, Grace JB and Taylor KL (1994) The relationship between species richness and community biomass: the importance of environmental variables. Oikos 70: 271–279Google Scholar
  12. Gould WA and Walker MD (1999) Plant communities and landscape diversity along a Canadian Arctic river. Journal of Vegetation Science 10: 537–548Google Scholar
  13. Hallingbäck T (1995) The practice of bryophyte conservation. Cryptogamica Helvetica 18: 119–126Google Scholar
  14. Hanski IA and Gilpin ME (eds) (1997) Metapopulation Biology. Academic Press, San Diego, CaliforniaGoogle Scholar
  15. Huston MA (1999) Local processes and regional patterns: appropriate scales for understanding variation in the diversity of plants and animals. Oikos 86: 393–401Google Scholar
  16. Ingerpuu N and Vellak K (1995) The distribution and some ecological characteristics of Estonian rare bryophytes. Arctoa 5: 143–148Google Scholar
  17. Ingerpuu N, Kalda A, Kannukene L, Krall H, Leis M and Vellak K (1994) List of the Estonian bryophytes. Abiks Loodusevaatlejale 94: 1–175Google Scholar
  18. Ingerpuu N, Kull K and Vellak K (1998) Bryophyte vegetation in a woodland meadow: relationships with phanerogam diversity and responses to fertilisation. Plant Ecology 134: 163–171Google Scholar
  19. Ilomets M (1998) Biological diversity of Estonian mires. In: Külvik M and Tambets J (eds) Eesti bioloogilise mitmekesisuse ülevaate (country study) materjale, pp 131–147. EPMÑ Keskkonnakaitse Instituut, Tallinn-Tartu, EstoniaGoogle Scholar
  20. Karoles K (1995) Eesti metsad ja metsasus [Estonian Forests and Their Area]. Eesti Riiklik Metsaamet, Tallinn, EstoniaGoogle Scholar
  21. Kukk T (1999) Eesti taimestik [Vascular Plant Flora of Estonia]. Teaduste Akadeemia Kirjastus, Tartu-Tallinn, EstoniaGoogle Scholar
  22. Kuusk V (1975) Taimede välimääraja [Field Key-Book of Plants]. Valgus, Tallinn, EstoniaGoogle Scholar
  23. Kuusk V, Tabaka L and Jankevičenė (1996) Flora of the Baltic Countries II. Eesti Loodusfoto, Tartu, EstoniaGoogle Scholar
  24. Laasimer L, Kuusk V, Tabaka L and Lekavičius A (1993) Flora of the Baltic Countries I. Eesti Loodusfoto, Tartu, EstoniaGoogle Scholar
  25. Lawton J (1996) Patterns in ecology. Oikos 75: 145–147Google Scholar
  26. Leht M (ed) (1999) Eesti taimede määraja [Key-Book of Estonian Plants]. EPMÑ ZBI, Eesti Loodusfoto, Tartu, EstoniaGoogle Scholar
  27. Lõhmus E (1984) Eesti metsakasvukohatüübid [Forest Site Types of Estonia]. ENSV Agrotööstuskoondise Info-ja Juurutusvalitsus, Tallinn, EstoniaGoogle Scholar
  28. Masing V (1975) Mire Typology of the Estonian S.S.R. In: Laasimer L (ed) Some Aspects of the Botanical Research in the Estonian S.S.R., pp 123–136. Publications Advisory Committee of the Academy of Sciences of the Estonian S.S.R., Tartu, EstoniaGoogle Scholar
  29. McGuinness KA (1984) Equations and explanations in the study of species-area curves. Biological Review 59: 423–440Google Scholar
  30. Meffe GK and Carroll CR (eds) (1994) Principles of conservation biology. Sinauer Association, Sunderland, MassachusettsGoogle Scholar
  31. Miller RI and Wiegert RG (1989) Documenting completeness, species-area relations and the species-abundance distribution of a regional flora. Ecology 70: 16–22Google Scholar
  32. Navid D (1994) A threatened habitat: wetlands. In: Bennet G (ed) Conserving Europe's Natural Heritage: Towards a European Ecological Network, pp 55–60. Graham & Trotman, LondonGoogle Scholar
  33. Noss RF and Csuti B (1994) Habitat fragmentation. In: Meffe GK and Carroll CR (eds) Principles of Conservation Biology, pp 237–264. Sinauer Association, Sunderland, MassachusettsGoogle Scholar
  34. Orru M, Shirokova M and Veldre M (1992) Eesti turbavarud [Estonian Peat Resources]. Eesti Geoloogia Keskus, Tallinn, EstoniaGoogle Scholar
  35. Paal J (1998) Rare and threatened plant communities of Estonia. Biodiversity and Conservation 7: 1027–1049Google Scholar
  36. Pärtel M and Zobel M (1995) Small-scale dynamics and species richness in successional alvar plant communities. Ecography 18: 83–90Google Scholar
  37. Pärtel M and Zobel M (1999) Small-scale plant species richness in calcareous grasslands determined by the species pool, community age and shoot density. Ecography 22: 153–159Google Scholar
  38. Pärtel M, Zobel M, Zobel K and van der Maarel E (1996) The species pool and its relation to species richness: evidence from Estonian plant communities. Oikos 75: 111–117Google Scholar
  39. Pärtel M, Kalamees R, Zobel M and Rosén E (1998) Restoration of species-rich limestone grassland communities from overgrown land: the importance of propagule availability. Ecological Engineering 10: 275–286Google Scholar
  40. Pärtel M, Kalamees R, Zobel M and Rosén E (1999) Alvar grasslands in Estonia: variation in species composition and community structure. Journal of Vegetation Science 10: 561–570Google Scholar
  41. Rabotnov TA (1987) Eksperimentalnaja fitotsenologija [Experimental Phytocoenology]. Moscow State University, MoscowGoogle Scholar
  42. Rey Benayas JM (1995) Patterns of diversity in the strata of boreal montane forest in British Columbia. Journal of Vegetation Science 6: 95–98Google Scholar
  43. Rosenzweig ML (1999) Heeding the warning in biodiversity's basic law. Science 284: 276–277Google Scholar
  44. Sansen U and Koedam N (1996) Use of sod cutting for restoration of wet heathlands: revegetation and establishment of typical species in relation to soil conditions. Journal of Vegetation Science 7: 483–486Google Scholar
  45. Såstad S and Moen A (1995) Classification of mire localities and mire species in central Norway by vegetation regions, Ellenberg species indicator values and climatic data. Gunneria 70: 177–188Google Scholar
  46. Sjörs H (1963) Amphi-atlantic zonation, nemoral to arctic. In: Löve A and Löve D (eds) North Atlantic Biota and Their History. Pergamon Press, New YorkGoogle Scholar
  47. Sætersdal M (1994) Rarity and species/area relationships of vascular plants in deciduous woods, western Norway-applications to nature reserve selection. Ecography 17: 23–38Google Scholar
  48. Tangney RS, Wilson JB and Mark AF (1990) Bryophyte island biogeography: a study in Lake Manapouri, New Zealand. Oikos 59: 21–26Google Scholar
  49. Taylor DR, Aarssen L and Loehle C (1990) On the relationship between r/K selection and environment carrying capacity: a new habitat templet for plant life history strategies. Oikos 58: 239–250Google Scholar
  50. Thompson K, Gaston KJ and Band SR (1999) Range size, dispersal and niche breadth in the herbaceous flora of central England. Journal of Ecology 87: 150–155Google Scholar
  51. Varblane A (1998) Ñlevaade Eesti metsasuse ja metsakasutuse ajaloost [Survey of the Estonian forest area and management history]. In: Külvik M and Tambets J (eds) Eesti bioloogilise mitmekesisuse ülevaate (country study) materjale, pp 109–113. EPMÑ Keskkonnakaitse instituut. Tallinn-Tartu, EstoniaGoogle Scholar
  52. Vellak K and Paal J (1999) Diversity of bryophyte vegetation in some forest types in Estonia: a comparison of old unmanaged and managed forests. Biodiversity and Conservation 8: 1595–1620Google Scholar
  53. Vitt DH, Li Y and Belland RJ (1995) Patterns of Bryophyte Diversity in Peatlands of Continental Western Canada. The Bryologist 98(2): 218–227Google Scholar
  54. Whittaker RH (1972) Evolution and management of species diversity. Taxon 21: 213–251Google Scholar
  55. Wilson JB and Sykes MT (1988) Some tests for niche limitation by examination of species diversity in the Dunedin area, New Zealand. New Zealand Journal of Botany 26: 237–244Google Scholar
  56. Zobel M (1993) Changes in pine forest communities after clear-cutting: a comparison of two edaphic gradients. Annales Botanici Fennici 30: 131–137Google Scholar
  57. Zobel M (1997) The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence? Trends in Ecology and Evolution 12: 266–269Google Scholar
  58. Zobel K and Liira J (1997) A scale-independent approach to the richness vs biomass relationship in groundlayer plant communities. Oikos 80: 325–332Google Scholar
  59. Zobel M, Suurkask M, Rosén E and Pärtel M (1996) The dynamics of species richness in an experimentally restored calcareous grassland. Journal of Vegetation Science 7: 203–210Google Scholar
  60. Zobel M, van der Maarel E and Dupré C (1998) Species pool: the concept, its determination and significance for community restoration. Applied Vegetation Science 1: 55–66Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Nele Ingerpuu
    • 1
    • 2
  • Kai Vellak
    • 1
    • 2
  • Toomas Kukk
    • 1
    • 2
  • Meelis Pärtel
    • 1
    • 3
  1. 1.Institute of Botany and EcologyUniversity of TartuTartuEstonia
  2. 2.Institute of Zoology and BotanyEstonian Agricultural UniversityTartuEstonia
  3. 3.Department of BiologyUniversity of ReginaReginaCanada

Personalised recommendations