Biochemistry (Moscow)

, Volume 66, Issue 11, pp 1269–1276 | Cite as

Infrared Methods for Monitoring the Protonation State of Carboxylic Amino Acids in the Photocycle of Bacteriorhodopsin

  • A. K. Dioumaev
Article

Abstract

This review deals with the role of carboxylic amino acids in the proton-transport activity of bacteriorhodopsin. The main focus is on the infrared data, which allow direct monitoring of the protonation/deprotonation of specific residues during the proton movement in the course of the photocycle. Additional attention is paid to the potential use of carboxylic acids in proteins as internal sensors, based on the sensitivity of their IR frequencies to the immediate environment.

retinal proteins FTIR time-resolved aspartic acid glutamic acid COOH stretch symmetric and antisymmetric stretching vibrations carbonyl carboxyl carboxylate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Oesterhelt, D., and Stoeckenius, W. (1971) Nature New Biology, 233, 149–152.Google Scholar
  2. 2.
    Oesterhelt, D., and Hess, B. (1973) Eur. J. Biochem., 37, 316–326.Google Scholar
  3. 3.
    Lozier, R. H., Bogomolni, R. A., and Stoeckenius, W. (1975) Biophys. J., 15, 955–962.Google Scholar
  4. 4.
    Applebury, M. L., Peters, K. S., and Rentzepis, P. M. (1978) Biophys. J., 23, 375–382.Google Scholar
  5. 5.
    Sharkov, A. V., Pakulev, A. V., Chekalin, S. V., and Matveetz, Y. A. (1985) Biochim. Biophys. Acta, 808, 94–102.Google Scholar
  6. 6.
    Váró, G., and Lanyi, J. K. (1990) Biochemistry, 29, 2241–2250.Google Scholar
  7. 7.
    Ames, J. B., and Mathies, R. A. (1990) Biochemistry, 29, 7181–7190.Google Scholar
  8. 8.
    Lozier, R. H., Xie, A. H., Hofrichter, J., and Clore, G. M. (1992) Proc. Natl. Acad. Sci. USA, 89, 3610–3614.Google Scholar
  9. 9.
    Lanyi, J. K., and Váró, G. (1995) Israel J. Chem., 35, 365–386.Google Scholar
  10. 10.
    Lanyi, J. K. (1998) J. Struct. Biol., 124, 164–178.Google Scholar
  11. 11.
    Shichida, Y., Matuoka, S., Hidaka, Y., and Yoshizawa, T. (1983) Biochim. Biophys. Acta, 723, 240–246.Google Scholar
  12. 12.
    Rothschild, K. J., Roepe, P. D., and Gillespie, J. (1985) Biochim. Biophys. Acta, 808, 140–148.Google Scholar
  13. 13.
    Weidlich, O., and Siebert, F. (1993) Appl. Spectrosc., 47, 1394–1400.Google Scholar
  14. 14.
    Dioumaev, A. K., and Braiman, M. S. (1997) J. Phys. Chem. B., 101, 1655–1662.Google Scholar
  15. 15.
    Gergely, C., Ganea, C., Groma, G., and Váró, G. (1993) Biophys. J., 65, 2478–2483.Google Scholar
  16. 16.
    Nagle, J. F., Zimányi, L., and Lanyi, J. K. (1995) Biophys. J., 68, 1490–1499.Google Scholar
  17. 17.
    Chon, Y. S., Kandori, H., Sasaki, J., Lanyi, J. K., Needleman, R., and Maeda, A. (1999) Biochemistry, 38, 9449–9455.Google Scholar
  18. 18.
    Váró, G., and Lanyi, J. K. (1991) Biochemistry, 30, 5008–5015.Google Scholar
  19. 19.
    Ludmann, K., Gergely, C., and Váró, G. (1998) Biophys. J., 75, 3110–3119.Google Scholar
  20. 20.
    Rödig, C., Chizhov, I. V., Weidlich, O., and Siebert, F. (1999) Biophys. J., 76, 2687–2701.Google Scholar
  21. 21.
    Cao, Y., Brown, L. S., Needleman, R., and Lanyi, J. K. (1993) Biochemistry, 32, 10239–10248.Google Scholar
  22. 22.
    Zimányi, L., Cao, Y., Needleman, R., Ottolenghi, M., and Lanyi, J. K. (1993) Biochemistry, 32, 7669–7678.Google Scholar
  23. 23.
    Weidlich, O., Schalt, B., Friedman, N., Sheves, M., Lanyi, J. K., Brown, L. S., and Siebert, F. (1996) Biochemistry, 35, 10807–10814.Google Scholar
  24. 24.
    Dioumaev, A. K., Brown, L. S., Needleman, R., and Lanyi, J. K. (2001) Biochemistry, 40, 11308–11317.Google Scholar
  25. 25.
    Dioumaev, A. K., Brown, L. S., Needleman, R., and Lanyi, J. K. (1999) Biochemistry, 38, 10070–10078.Google Scholar
  26. 26.
    Warshel, A. (1979) Photochem. Photobiol., 30, 285–290.Google Scholar
  27. 27.
    Druckmann, S., Ottolenghi, M., Pande, A., Pande, J., and Callender, R. H. (1982) Biochemistry, 21, 4953–4959.Google Scholar
  28. 28.
    Warshel, A. (1978) Proc. Natl. Acad. Sci. USA, 75, 2558–2562.Google Scholar
  29. 29.
    Chernavskii, D. S. (1994) Biophysics, 39, 651–656.Google Scholar
  30. 30.
    Polland, H. J., Franz, M. A., Zinth, W., Kaiser, W., Kölling, E., and Oesterhelt, D. (1984) Biochim. Biophys. Acta, 767, 635–639.Google Scholar
  31. 31.
    Pollard, W. T., Mathies, R. A., Cruz, C. H. B., and Shank, C. V. (1989) J. Chem. Phys., 90, 199–208.Google Scholar
  32. 32.
    Haupts, U., Tittor, J., Bamberg, E., and Oesterhelt, D. (1997) Biochemistry, 36, 2–7.Google Scholar
  33. 33.
    Brown, L. S., Dioumaev, A. K., Needleman, R., and Lanyi, J. K. (1998) Biochemistry, 37, 3982–3993.Google Scholar
  34. 34.
    Balashov, S. P., Imasheva, E. S., Govindjee, R., Sheves, M., and Ebrey, T. G. (1996) Biophys. J., 71, 1973–1984.Google Scholar
  35. 35.
    Balashov, S. P., Imasheva, E. S., Govindjee, R., and Ebrey, T. G. (1996) Biophys. J., 70, 473–481.Google Scholar
  36. 36.
    Richter, H.-T., Brown, L. S., Needleman, R., and Lanyi, J. K. (1996) Biochemistry, 35, 4054–4062.Google Scholar
  37. 37.
    Urry, D. W., Gowda, D. C., Peng, S., Parker, T. M., Jing, N., and Harris, R. D. (1994) Biopolymers, 34, 889–896.Google Scholar
  38. 38.
    Száraz, S., Oesterhelt, D., and Ormos, P. (1994) Biophys. J., 67, 1706–1712.Google Scholar
  39. 39.
    Wilson, N. A., Barbar, E., and Fuchs, J. A. (1995) Biochemistry, 34, 8931–8939.Google Scholar
  40. 40.
    Braiman, M. S., Dioumaev, A. K., and Lewis, J. R. (1996) Biophys. J., 70, 939–947.Google Scholar
  41. 41.
    Chang, C.-H., Jonas, R., Govindjee, R., and Ebrey, T. G. (1988) Photochem. Photobiol., 47, 261–265.Google Scholar
  42. 42.
    Fischer, U., and Oesterhelt, D. (1979) Biophys. J., 28, 211–230.Google Scholar
  43. 43.
    Balashov, S. P., Lu, M., Imasheva, E. S., Govindjee, R., Ebrey, T. G., Othersen, B., III, Chen, Y., Crouch, R. K., and Menick, D. R. (1999) Biochemistry, 38, 2026–2039.Google Scholar
  44. 44.
    Gilles-Gonzalez, M. A., Hackett, N. R., Jones, S. J., Khorana, H. G., Lee, D. S., Lo, K. M., and McCoy, J. M. (1986) Meth. Enzymol., 125, 190–214.Google Scholar
  45. 45.
    Dunn, R. J., Hackett, N. R., McCoy, J. M., Chao, B. H., Kimura, K., and Khorana, H. G. (1987) J. Biol. Chem., 262, 9246–9254.Google Scholar
  46. 46.
    Soppa, J., and Oesterhelt, D. (1989) J. Biol. Chem., 264, 13043–13048.Google Scholar
  47. 47.
    Ni, B. F., Chang, M., Duschl, A., Lanyi, J. K., and Needleman, R. (1990) Gene, 90, 169–172.Google Scholar
  48. 48.
    Rothschild, K. J., Zagaeski, M., and Cantore, W. A. (1981) Biochem. Biophys. Res. Commun., 103, 483–489.Google Scholar
  49. 49.
    Siebert, F., Mäntele, W., and Kreutz, W. (1982) FEBS Lett., 141, 82–87.Google Scholar
  50. 50.
    Engelhard, M., Gerwert, K., Hess, B., Kreutz, W., and Siebert, F. (1985) Biochemistry, 24, 400–407.Google Scholar
  51. 51.
    Braiman, M. S., Bousché, O., and Rothschild, K. J. (1991) Proc. Natl. Acad. Sci. USA, 88, 2388–2392.Google Scholar
  52. 52.
    Hessling, B., Souvignier, G., and Gerwert, K. (1993) Biophys. J., 65, 1929–1941.Google Scholar
  53. 53.
    Engelhard, M., Hess, B., Metz, G., Kreutz, W., Siebert, F., Soppa, J., and Oesterhelt, D. (1990) Eur. Biophys. J., 18, 17–24.Google Scholar
  54. 54.
    Metz, G., Siebert, F., and Engelhard, M. (1992) FEBS Lett., 303, 237–241.Google Scholar
  55. 55.
    Metz, G., Siebert, F., and Engelhard, M. (1992) Biochemistry, 31, 455–462.Google Scholar
  56. 56.
    Pouchert, C. J. (1985) The Aldrich Library of FT-IR Spectra. Vol. 3: Vapor Phase, Aldrich Chemical Company Inc. Milwaukee.Google Scholar
  57. 57.
    Pouchert, C. J. (1985) The Aldrich Library of FT-IR Spectra. Vol. 1, Aldrich Chemical Company Inc. Milwaukee.Google Scholar
  58. 58.
    Keller, R. J. (1986) The Sigma Library of FT-IR Spectra, Sigma Chemical Company Inc. St. Louis.Google Scholar
  59. 59.
    Bellamy, L. J. (1975) The Infrared Spectra of Complex Molecules, Chapman and Hall.Wiley, London-New York.Google Scholar
  60. 60.
    Venyaminov, S. Y., and Kalnin, N. N. (1990) Biopolymers, 30, 1243–1257.Google Scholar
  61. 61.
    Barth, A. (2000) Progr. Biophys. Mol. Biol., 74, 141–173.Google Scholar
  62. 62.
    Wright, W. W., and Vanderkooi, J. M. (1997) Biospectroscopy, 3, 457–467.Google Scholar
  63. 63.
    Zscherp, C., and Heberle, J. (1997) J. Phys. Chem. B., 101, 10542–10547.Google Scholar
  64. 64.
    Lascombe, J., Haurie, M., and Josien, M.-L. (1962) Journal de chimie physique et de physico-chimie biologique, 59, 1233–1246.Google Scholar
  65. 65.
    Bellamy, L. J. (1980) The Infrared Spectra of Complex Molecules. Vol. 2: Advances in Infrared Group Frequencies, Chapman and Hall, London-New York.Google Scholar
  66. 66.
    Haurie, M., and Novak, A. (1967) Journal de chimie physique et de physico-chimie biologique, 64, 697–684.Google Scholar
  67. 67.
    Dioumaev, A. K., and Braiman, M. S. (1995) J. Am. Chem. Soc., 117, 10572–10574.Google Scholar
  68. 68.
    Nyquist, R. A. (1994) Vibrat. Spec., 7, 1–29.Google Scholar
  69. 69.
    Gunner, M. R., and Alexov, E. (2000) Biochim. Biophys. Acta, 1458, 63–87.Google Scholar
  70. 70.
    Ihara, K., Umemura, T., Katagiri, I., Kitajima-Ihara, T., Sugiyama, Y., Kimura, Y., and Mukohata, Y. (1999) J. Mol. Biol., 285, 163–174.Google Scholar
  71. 71.
    Brown, L. S. (2001) Biochemistry (Moscow), 66, 1249–1255.Google Scholar
  72. 72.
    Braiman, M. S., Mogi, T., Marti, T., Stern, L. J., Khorana, H. G., and Rothschild, K. J. (1988) Biochemistry, 27, 8516–8520.Google Scholar
  73. 73.
    Brown, L. S., Sasaki, J., Kandori, H., Maeda, A., Needleman, R., and Lanyi, J. K. (1995) J. Biol. Chem., 270, 27122–27126.Google Scholar
  74. 74.
    Balashov, S. P., Imasheva, E. S., Ebrey, T. G., Chen, N., Menick, D. R., and Crouch, R. K. (1997) Biochemistry, 36, 8671–8676.Google Scholar
  75. 75.
    Dioumaev, A. K., Richter, H.-T., Brown, L. S., Tanio, M., Tuzi, S., Saitô, H., Kimura, Y., Needleman, R., and Lanyi, J. K. (1998) Biochemistry, 37, 2496–2506.Google Scholar
  76. 76.
    Nachliel, E., Gutman, M., Kiryati, S., and Dencher, N. A. (1996) Proc. Natl. Acad. Sci. USA, 93, 10747–10752.Google Scholar
  77. 77.
    Nachliel, E., and Gutman, M. (1996) FEBS Lett., 393, 221–225.Google Scholar
  78. 78.
    Checover, S., Nachliel, E., Dencher, N. A., and Gutman, M. (1997) Biochemistry, 36, 13919–13928.Google Scholar
  79. 79.
    Riesle, J., Oesterhelt, D., Dencher, N. A., and Heberle, J. (1996) Biochemistry, 35, 6635–6643.Google Scholar
  80. 80.
    Brown, L. S., Needleman, R., and Lanyi, J. K. (1999) Biochemistry, 38, 6855–6861.Google Scholar
  81. 81.
    Siebert, F. (1993) in Biomolecular Spectroscopy (Pt. A) (Clark, R. J. H., and Hester, R. E., eds.) John Wiley & Sons Ltd, London, pp. 1–54.Google Scholar
  82. 82.
    Zscherp, C., Schlesinger, R., Tittor, J., Oesterhelt, D., and Heberle, J. (1999) Proc. Natl. Acad. Sci. USA, 96, 5498–5503.Google Scholar
  83. 83.
    Pfefferlé, J.-M., Maeda, A., Sasaki, J., and Yoshizawa, T. (1991) Biochemistry, 30, 6548–6556.Google Scholar
  84. 84.
    Souvignier, G., and Gerwert, K. (1992) Biophys. J., 63, 1393–1405.Google Scholar
  85. 85.
    Bousché, O., Sonar, S., Krebs, M. P., Khorana, H. G., and Rothschild, K. J. (1992) Photochem. Photobiol., 56, 1085–1095.Google Scholar
  86. 86.
    Gerwert, K., Hess, B., Soppa, J., and Oesterhelt, D. (1989) Proc. Natl. Acad. Sci. USA, 86, 4943–4947.Google Scholar
  87. 87.
    Sasaki, J., Lanyi, J. K., Needleman, R., Yoshizawa, T., and Maeda, A. (1994) Biochemistry, 33, 3178–3184.Google Scholar
  88. 88.
    Maeda, A., Sasaki, J., Shichida, Y., Yoshizawa, T., Chang, M., Ni, B., Needleman, R., and Lanyi, J. K. (1992) Biochemistry, 31, 4684–4690.Google Scholar
  89. 89.
    Maeda, A., Tomson, F. L., Gennis, R. B., Kandori, H., Ebrey, T. G., and Balashov, S. P. (2000) Biochemistry, 39, 10154–10162.Google Scholar
  90. 90.
    Holz, M., Drachev, L. A., Mogi, T., Otto, H., Kaulen, A. D., Heyn, M. P., Skulachev, V. P., and Khorana, H. G. (1989) Proc. Natl. Acad. Sci. USA, 86, 2167–2171.Google Scholar
  91. 91.
    Gerwert, K., Souvignier, G., and Hess, B. (1990) Proc. Natl. Acad. Sci. USA, 87, 9774–9778.Google Scholar
  92. 92.
    Fahmy, K., Weidlich, O., Engelhard, M., Sigrist, H., and Siebert, F. (1993) Biochemistry, 32, 5862–5869.Google Scholar
  93. 93.
    Eisenstein, L., Lin, S.-L., Dollinger, G., Odashima, K., Termini, J., Konno, K., Ding, W.-D., and Nakanishi, K. (1987) J. Am. Chem. Soc., 109, 6860–6862.Google Scholar
  94. 94.
    Rothschild, K. J., Marti, T., Sonar, S., He, Y. W., Rath, P., Fischer, W., and Khorana, H. G. (1993) J. Biol. Chem., 268, 27046–27052.Google Scholar
  95. 95.
    Dollinger, G., Eisenstein, L., Lin, S. L., Nakanishi, K., Odashima, K., and Termini, J. (1986) Meth. Enzymol., 127, 649–662.Google Scholar
  96. 96.
    Rammelsberg, R., Huhn, G., Lubben, M., and Gerwert, K. (1998) Biochemistry, 37, 5001–5009.Google Scholar
  97. 97.
    Bousché, O., Braiman, M. S., He, Y. W., Marti, T., Khorana, H. G., and Rothschild, K. J. (1991) J. Biol. Chem., 266, 11063–11067.Google Scholar
  98. 98.
    Fahmy, K., Weidlich, O., Engelhard, M., Tittor, J., Oesterhelt, D., and Siebert, F. (1992) Photochem. Photobiol., 56, 1073–1083.Google Scholar
  99. 99.
    Laulicht, I., and Pinchas, S. (1971) in Infrared Spectra of Labeled Compounds (Pinchas, S., and Laulicht, I., eds.) Academic Press, London-New York, pp. 38–200.Google Scholar
  100. 100.
    Roepe, P. D., Ahl, P. L., Das Gupta, S. K., Herzfeld, J., and Rothschild, K. J. (1987) Biochemistry, 26, 6696–6707.Google Scholar
  101. 101.
    Gerwert, K., Ganter, U. M., Siebert, F., and Hess, B. (1987) FEBS Lett., 213, 39–44.Google Scholar
  102. 102.
    Laulicht, I. (1971) in Infrared Spectra of Labeled Compounds (Pinchas, S., and Laulicht, I., eds.) Academic Press, London-New York, pp. 201–237.Google Scholar
  103. 103.
    Craver, C. D. (1986) The Coblentz Society Desk Book of Infrared Spectra, Coblentz Society, Kirkwood.Google Scholar
  104. 104.
    Cao, Y., Váró, G., Klinger, A. L., Czajkowsky, D. M., Braiman, M. S., Needleman, R., and Lanyi, J. K. (1993) Biochemistry, 32, 1981–1990.Google Scholar
  105. 105.
    Váró, G., and Lanyi, J. K. (1990) Biochemistry, 29, 6858–6865.Google Scholar
  106. 106.
    Heberle, J., and Dencher, N. A. (1992) Proc. Natl. Acad. Sci. USA, 89, 5996–6000.Google Scholar
  107. 107.
    Kaulen, A. D. (2000) Biochim. Biophys. Acta, 1460, 204–219.Google Scholar
  108. 108.
    Drachev, L. A., Kaulen, A. D., Khitrina, L. V., and Skulachev, V. P. (1981) Eur. J. Biochem., 117, 461–470.Google Scholar
  109. 109.
    Dioumaev, A. K., Savransky, V. V., Vasilyev, G. V., Vladimirova, R. R., and Malina, Z. A. (1984) Biophysics (Moscow), 29, 427–431.Google Scholar
  110. 110.
    Liu, S. Y., Govindjee, R., and Ebrey, T. G. (1990) Biophys. J., 57, 951–963.Google Scholar
  111. 111.
    Ormos, P. (1991) Proc. Natl. Acad. Sci. USA, 88, 473–477.Google Scholar
  112. 112.
    Zimányi, L., Váró, G., Chang, M., Ni, B., Needleman, R., and Lanyi, J. K. (1992) Biochemistry, 31, 8535–8543.Google Scholar
  113. 113.
    Drachev, L. A., Kaulen, A. D., Skulachev, V. P., and Zorina, V. V. (1987) FEBS Lett., 226, 139–144.Google Scholar
  114. 104.
    Butt, H.-J., Fendler, K., Bamberg, E., Tittor, J., and Oesterhelt, D. (1989) EMBO J., 8, 1657–1663.Google Scholar
  115. 115.
    Ludmann, K., Gergely, C., Dér, A., and Váró, G. (1998) Biophys. J., 75, 3120–3126.Google Scholar
  116. 116.
    Drachev, L. A., Jasaitis, A. A., Kaulen, A. D., Kondrashin, A. A., Liberman, E. A., Nemecek, I. B., Ostroumov, S. A., Semenov, A. Y., and Skulachev, V. P. (1974) Nature (UK), 249, 321–324.Google Scholar
  117. 117.
    Drachev, L. A., Frolov, V. N., Kaulen, A. D., Liberman, E. A., Ostroumov, S. A., Plakunova, V. G., Semenov, A. Y., and Skulachev, V. P. (1976) J. Biol. Chem., 251, 7059–7065.Google Scholar
  118. 118.
    Drachev, L. A., Kaulen, A. D., and Skulachev, V. P. (1978) FEBS Lett., 87, 161–167.Google Scholar
  119. 119.
    Keszthelyi, L., Ormos, P., and Váró, G. (1982) Acta Phys. Acad. Sci. Hung., 53, 143–157.Google Scholar
  120. 120.
    Keszthelyi, L., and Ormos, P. (1989) J. Mem. Biol., 109, 193–200.Google Scholar
  121. 121.
    Trissl, H.-W. (1990) Photochem. Photobiol., 51, 793–818.Google Scholar
  122. 122.
    Lazarova, T., Sanz, C., Querol, E., and Padros, E. (2000) Biophys. J., 78, 2022–2030.Google Scholar
  123. 123.
    Brown, L. S., Dioumaev, A. K., Needleman, R., and Lanyi, J. K. (2000) Abst. 9th Int. Conf. on Retinal Proteins, Szeged, Hungary, p. 24.Google Scholar
  124. 124.
    Luecke, H., Richter, H.-T., and Lanyi, J. K. (1998) Science (USA), 280, 1934–1937.Google Scholar
  125. 125.
    Luecke, H., Schobert, B., Richter, H.-T., Cartailler, J. P., and Lanyi, J. K. (1999) J. Mol. Biol., 291, 899–911.Google Scholar
  126. 126.
    Luecke, H., Schobert, B., Cartailler, J. P., Richter, H. T., Rosengarth, A., Needleman, R., and Lanyi, J. K. (2000) J. Mol. Biol., 300, 1237–1255.Google Scholar
  127. 127.
    Chizhov, I. V., Schmies, G., Seidel, R., Sydor, J. R., Lüttenberg, B., and Engelhard, M. (1998) Biophys. J., 75, 999–1009.Google Scholar
  128. 128.
    Olson, K. D., Deval, P., and Spudich, J. L. (1992) Photochem. Photobiol., 56, 1181–1187.Google Scholar
  129. 129.
    Haupts, U., Haupts, C., and Oesterhelt, D. (1995) Proc. Natl. Acad. Sci. USA, 92, 3834–3838.Google Scholar
  130. 130.
    Le Coutre, J., Tittor, J., Oesterhelt, D., and Gerwert, K. (1995) Proc. Natl. Acad. Sci. USA, 92, 4962–4966.Google Scholar
  131. 131.
    Hutson, M. S., Alexiev, U., Shilov, S. V., Wise, K. J., and Braiman, M. S. (2000) Biochemistry, 39, 13189–13200.Google Scholar
  132. 132.
    Drachev, L. A., Kaulen, A. D., Khorana, H. G., Mogi, T., Otto, H., Skulachev, V. P., Heyn, M. P., and Holz, M. (1989) Biokhimiya, 54, 1195–1203.Google Scholar
  133. 132.
    Brown, L. S., and Lanyi, J. K. (1996) Proc. Natl. Acad. Sci. USA, 93, 1731–1734.Google Scholar
  134. 134.
    Birge, R. R., Cooper, T. M., Lawrence, A. F., Masthay, M. B., Zhang, C.-F., and Zidovetzki, R. (1991) J. Am. Chem. Soc., 113, 4327–4328.Google Scholar
  135. 135.
    Spudich, J. L., Yang, C. S., Jung, K. H., and Spudich, E. N. (2000) Annu. Rev. Cell Dev. Biol., 16, 365–392.Google Scholar
  136. 136.
    Béjá, O., Aravind, L., Koonin, E. V., Suzuki, M. T., Hadd, A., Nguyen, L. P., Jovanovich, S. B., Gates, C. M., Feldman, R. A., Spudich, J. L., Spudich, E. N., and DeLong, E. F. (2000) Science, 289, 1902–1906.Google Scholar
  137. 137.
    Bieszke, J. A., Spudich, E. N., Scott, K. L., Borkovich, K. A., and Spudich, J. L. (1999) Biochemistry, 38, 14138–14145.Google Scholar
  138. 138.
    Brown, L. S., Dioumaev, A. K., Lanyi, J. K., Spudich, J. L., and Spudich, E. N. (2001) J. Biol. Chem., 276, 32495–32505.Google Scholar
  139. 139.
    Béjá, O., Spudich, E. N., Spudich, J. L., Leclerc, M., and DeLong, E. F. (2001) Nature (UK), 411, 786–789.Google Scholar
  140. 140.
    Bergo, V., Scott, K. L., Spudich, E. N., Spudich, J. L., and Rothschild, K. J. (2000) Biophys. J., 78, 477A.Google Scholar
  141. 141.
    Eisenberg, D. D., and Kauzmann, W. (1969) The Structure and Properties of Water, Oxford University Press, New York.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • A. K. Dioumaev
    • 1
  1. 1.Department of Physiology and BiophysicsUniversity of CaliforniaIrvine, IrvineUSA

Personalised recommendations