Advertisement

Biochemistry (Moscow)

, Volume 66, Issue 11, pp 1197–1209 | Cite as

Photoisomerization in Rhodopsin

  • H. Kandori
  • Y. Shichida
  • T. Yoshizawa
Article

Abstract

This article reviews the primary reaction processes in rhodopsin, a photoreceptive pigment for twilight vision. Rhodopsin has an 11-cis retinal as the chromophore, which binds covalently with a lysine residue through a protonated Schiff base linkage. Absorption of a photon by rhodopsin initiates the primary photochemical reaction in the chromophore. Picosecond time-resolved spectroscopy of 11-cis locked rhodopsin analogs revealed that the cis-trans isomerization of the chromophore is the primary reaction in rhodopsin. Then, generation of femtosecond laser pulses in the 1990s made it possible to follow the process of isomerization in real time. Formation of photorhodopsin within 200 fsec was observed by a transient absorption (pump–probe) experiment, which also revealed that the photoisomerization in rhodopsin is a vibrationally coherent process. Femtosecond fluorescence spectroscopy directly captured excited-state dynamics of rhodopsin, so that both coherent reaction process and unreacted excited state were observed. Faster photoreaction of the chromophore in rhodopsin than that in solution implies that the protein environment facilitates the efficient isomerization process. Such contributions of the protein residues have been monitored by infrared spectroscopy of rhodopsin, bathorhodopsin, and isorhodopsin (9-cis rhodopsin) at low temperatures. The crystal structure of bovine rhodopsin recently reported will lead to better understanding of the mechanism in future.

rhodopsin photorhodopsin bathorhodopsin isorhodopsin photoisomerization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Khorana, H. G. (1992) J. Biol. Chem., 267, 1–4.Google Scholar
  2. 2.
    Hofmann, K.-P., and Helmreich, E. J. M. (1996) Biochim. Biophys. Acta, 1286, 285–322.Google Scholar
  3. 3.
    Sakmar, T. P. (1998) Prog. Nucleic Acid Res. Mol. Biol., 59, 1–33.Google Scholar
  4. 4.
    Shichida, Y., and Imai, H. (1998) CMLS, Cell. Mol. Life Sci., 54, 1299–1315.Google Scholar
  5. 5.
    Matsumoto, H., and Yoshizawa, T. (1975) Nature, 258, 523–526.Google Scholar
  6. 6.
    Yoshizawa, T., and Shichida, Y. (1982) Meth. Enzymol., 81, 333–354.Google Scholar
  7. 7.
    Shichida, Y. (1986) Photobiochem. Photobiophys., 13, 287–307.Google Scholar
  8. 8.
    Yoshizawa, T., and Kandori, H. (1992) in Progress in Retinal Research (Osborne, N., and Chader, G., eds.) Pergamon Press, Oxford, pp. 33–55.Google Scholar
  9. 9.
    Yoshizawa, T., and Wald, G. (1963) Nature, 197, 1279–1286.Google Scholar
  10. 10.
    Yoshizawa, T. (1972) in Handbook of Sensory Physiology (Dartnall, H. J. A., ed.) Springer-Verlag, Berlin, pp. 69–81.Google Scholar
  11. 11.
    Shichida, Y., Kobayashi, T., Ohtani, H., Yoshizawa, T., and Nagakura, S. (1978) Photochem. Photobiol., 27, 335–341.Google Scholar
  12. 12.
    Shichida, Y., Matuoka, S., and Yoshizawa, T. (1984) Photobiochem. Photobiophys., 7, 221–228.Google Scholar
  13. 13.
    Peters, K., Applebury, M. L., and Rentzepis, P. M. (1977) Proc. Natl. Acad. Sci. USA, 74, 3119–3123.Google Scholar
  14. 14.
    Dartnall, H. J. A. (1967) Vision Res., 8, 339–358.Google Scholar
  15. 15.
    Okada, T., Trong, I. L., Fox, B. A., Behnke, C. A., Stenkamp, R. E., and Palczewski, K. (2000) J. Struct. Biol., 130, 73–80.Google Scholar
  16. 16.
    Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., le Trong, I., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M., and Miyano, M. (2000) Science, 289, 739–745.Google Scholar
  17. 17.
    Yoshizawa, T., and Kito, Y. (1958) Nature, 182, 1604–1605.Google Scholar
  18. 18.
    Busch, G. E., Applebury, M. L., Lamola, A. A., and Rentzepis, P. M. (1972) Proc. Natl. Acad. Sci. USA, 69, 2802–2806.Google Scholar
  19. 19.
    Kawamura, S., Tokunaga, F., Yoshizawa, T., Sarai, A., and Kakitani, T. (1979) Vision Res., 19, 879–884.Google Scholar
  20. 20.
    Fukada, Y., Shichida, Y., Yoshizawa, T., Ito, M., Kodama, A., and Tsukida, K. (1984) Biochemistry, 23, 5826–5832.Google Scholar
  21. 21.
    Callender, R. (1982) Meth. Enzymol., 88, 625–633.Google Scholar
  22. 22.
    Kandori, H., Matuoka, S., Shichida, Y., and Yoshizawa, T. (1989) Photochem. Photobiol., 49, 181–184.Google Scholar
  23. 23.
    Matuoka, S., Shichida, Y., and Yoshizawa, T. (1984) Biochim. Biophys. Acta, 765, 38–42.Google Scholar
  24. 24.
    Kandori, H., Shichida, Y., and Yoshizawa, T. (1989) Biophys. J., 56, 453–457.Google Scholar
  25. 25.
    Sperling, W. (1973) in Biochemistry and Physiology of Visual Pigments (Langer, H., ed.) Springer-Verlag, Heidelberg, pp. 19–28.Google Scholar
  26. 26.
    Mao, B., Tsuda, M., Ebrey, T. G., Akita, H., Balogh-Nair, V., and Nakanishi, K. (1981) Biophys. J., 35, 543–546.Google Scholar
  27. 27.
    Buchert, J., Stefancic, V., Doukas, A. G., Alfano, R. R., Callender, R. H., Pande, J., Akita, H., Balogh-Nair, V., and Nakanishi, K. (1983) Biophys. J., 43, 279–283.Google Scholar
  28. 28.
    Kandori, H., Matuoka, S., Shichida, Y., Yoshizawa, T., Ito, M., Tsukida, K., Balogh-Nair, V., and Nakanishi, K. (1989) Biochemistry, 28, 6460–6467.Google Scholar
  29. 29.
    Mizukami, T., Kandori, H., Shichida, Y., Chen, A.-H., Derguini, F., Caldwell, C. G., Bigge, C., Nakanishi, K., and Yoshizawa, T. (1993) Proc. Natl. Acad. Sci. USA, 90, 4072–4076.Google Scholar
  30. 30.
    Doukas, A. G., Junnarker, M. R., Alfano, R. R., Callender, R. H., Kakitani, T., and Honig, B. (1984) Proc. Natl. Acad. Sci. USA, 81, 4790–4794.Google Scholar
  31. 31.
    Schoenlein, R. W., Peteanu, L. A., Mathies, R. A., and Shank, C. V. (1991) Science, 254, 412–415.Google Scholar
  32. 32.
    Yan, M., Manor, D., Weng, G., Chao, H., Rothberg, L., Jedju, T. M., Alfano, R. R., and Callender, C. H. (1991) Proc. Natl. Acad. Sci. USA, 88, 9809–9812.Google Scholar
  33. 33.
    Taiji, M., Bryl, K., Nakagawa, M., Tsuda, M., and Kobayashi, T. (1992) Photochem. Photobiol., 56, 1003–1011.Google Scholar
  34. 34.
    Schoenlein, R. W., Peteanu, L. A., Wang, Q., Mathies, R. A., and Shank, C. V. (1993) J. Phys. Chem., 97, 12087–12092.Google Scholar
  35. 35.
    Peteanu, L. A., Schoenlein, R. W., Wang, Q., Mathies, R. A., and Shank, C. V. (1993) Proc. Natl. Acad. Sci. USA, 90, 11762–11766.Google Scholar
  36. 36.
    Wang, Q., Schoenlein, R. W., Peteanu, L. A., Mathies, R. A., and Shank, C. V. (1994) Science, 266, 422–424.Google Scholar
  37. 37.
    Wang, Q., Kochendoerfer, G. G., Schoenlein, R. W., Verdegem, P. J. E., Lugtenburg, J., Mathies, R. A., and Shank, C. V. (1996) J. Phys. Chem., 100, 17388–17394.Google Scholar
  38. 38.
    Kandori, H., Sasabe, H., Nakanishi, K., Yoshizawa, T., Mizukami, T., and Shichida, Y. (1996) J. Am. Chem. Soc., 118, 1002–1005.Google Scholar
  39. 39.
    Kobayashi, T., Kim, M., Taiji, M., Iwasa, T., Nakagawa, M., and Tsuda, M. (1998) J. Phys. Chem. B, 102, 272–280.Google Scholar
  40. 40.
    Chosrowjan, H., Mataga, N., Shibata, Y., Tachibanaki, S., Kandori, H., Shichida, Y., Okada, T., and Kouyama, T. (1998) J. Am. Chem. Soc., 120, 9706–9707.Google Scholar
  41. 41.
    Haran, G., Morlino, E. A., Mathes, J., Callender, R. H., and Hochstrasser, R. M. (1999) J. Phys. Chem. A, 103, 2202–2207.Google Scholar
  42. 42.
    Yan, M., Rothberg, L., and Callender, R. H. (2001) J. Phys. Chem. B, 105, 856–859.Google Scholar
  43. 43.
    Kandori, H., Furutani, Y., Nishimura, S., Shichida, Y., Chosrowjan, H., Shibata, Y., and Mataga, N. (2001) Chem. Phys. Lett., 334, 271–276.Google Scholar
  44. 44.
    Kandori, H., Katsuta, Y., Ito, M., and Sasabe, H. (1995) J. Am. Chem. Soc., 117, 2669–2670.Google Scholar
  45. 45.
    Kochendoerfer, G. G., and Mathies, R. A. (1995) Isr. J. Chem., 35, 211–226.Google Scholar
  46. 46.
    Mathies, R. A. (1999) in Rhodopsins and Phototransduction (Novartis Foundation Symposium) (Yoshizawa, T., ed.) John Wiley & Sons, Chichester, pp. 70–84.Google Scholar
  47. 47.
    Becker, R. S., and Freedman, K. (1985) J. Am. Chem. Soc., 107, 1477–1485.Google Scholar
  48. 48.
    Koyama, Y., Kubo, K., Komori, M., Yasuda, H., and Mukai, Y. (1991) Photochem. Photobiol., 54, 433–443.Google Scholar
  49. 49.
    Kandori, H., Yoshihara, K., Tomioka, H., and Sasabe, H. (1992) J. Phys. Chem., 96, 6066–6071.Google Scholar
  50. 50.
    Guzzo, A. V., and Pool, G. L. (1967) Science, 159, 312–314.Google Scholar
  51. 51.
    Sineshchekov, V. A., Balashov, S. P., and Litvin, F. F. (1983) Dokl. AN SSSR, 270, 1231–1235.Google Scholar
  52. 52.
    Kochendoerfer, G. G., and Mathies, R. A. (1996) J. Phys. Chem., 100, 14526–14532.Google Scholar
  53. 53.
    Kakitani, T., Akiyama, R., Hatano, Y., Imamoto, Y., Shichida, Y., Verdegem, P., and Lugtenburg, J. (1998) J. Phys. Chem. B, 102, 1334–1339.Google Scholar
  54. 54.
    Eyring, G., Curry, B., Broek, A., Lugtenburg, J., and Mathies, R. A. (1982) Biochemistry, 21, 384–393.Google Scholar
  55. 55.
    Palings, I., van den Berg, E. M. M., Lugtenburg, J., and Mathies, R. A. (1989) Biochemistry, 28, 1498–1507.Google Scholar
  56. 56.
    Cooper, A. (1979) Nature, 282, 531–533.Google Scholar
  57. 57.
    Zhukovsky, E. A., and Oprian, D. D. (1989) Science, 246, 928–930.Google Scholar
  58. 58.
    Sakmar, T. P., Franke, R. R., and Khorana, H. G. (1989) Proc. Natl. Acad. Sci. USA, 86, 8309–8313.Google Scholar
  59. 59.
    Rothschild, K. J. (1992) J. Bioenerg. Biomembr., 24, 147–167.Google Scholar
  60. 60.
    Siebert, F. (1995) Isr. J. Chem., 35, 309–323.Google Scholar
  61. 61.
    Maeda, A., Kandori, H., Yamazaki, Y., Nishimura, S., Hatanaka, M., Chon, Y.-S., Sasaki, J., Needleman, R., and Lanyi, J. K. (1997) J. Biochem., 121, 399–406.Google Scholar
  62. 62.
    Siebert, F., Mäntele, W., and Gerwert, K. (1983) Eur. J. Biochem., 136, 119–127.Google Scholar
  63. 63.
    Bagley, K. A., Balogh-Nair, V., Croteau, A. A., Dollinger, G., Ebrey, T. G., Eisenstein, L., Hong, M. K., Nakanishi, K., and Vittitow, J. (1985) Biochemistry, 24, 6055–6071.Google Scholar
  64. 64.
    DeGrip, W. J., Gray, D., Gillespie, J., Bovee, P. H. M., van den Berg, E. M. M., Lugtenburg, J., and Rothschild, K. J. (1988) Photochem. Photobiol., 48, 497–504.Google Scholar
  65. 65.
    Kandori, H., and Maeda, A. (1995) Biochemistry, 34, 14220–14229.Google Scholar
  66. 66.
    Kandori, H. (2000) Biochim. Biophys. Acta, 1460, 177–191.Google Scholar
  67. 67.
    Nagata, T., Terakita, A., Kandori, H., Kojima, D., Shichida, Y., and Maeda, A. (1997) Biochemistry, 36, 6164–6170.Google Scholar
  68. 68.
    Nagata, T., Terakita, A., Kandori, H., Shichida, Y., and Maeda, A. (1998) Biochemistry, 37, 17216–17222.Google Scholar
  69. 69.
    Shichida, Y., Ono, T., Yoshizawa, T., Matsumoto, H., Asato, A. E., Zingoni, J. P., and Liu, R. S. H. (1987) Biochemistry, 26, 4422–4428.Google Scholar
  70. 70.
    Borhan, B., Souto, M. L., Imai, H., Shichida, Y., and Nakanishi, K. (2000) Science, 288, 2209–2212.Google Scholar
  71. 71.
    Siebert, F. (1995) Israel J. Chem., 35, 309–323.Google Scholar
  72. 72.
    Eilers, M., Reeves, P. J., Ying, W., Khorana, H. G., and Smith, S. O. (1999) Proc. Natl. Acad. Sci. USA, 96, 487–492.Google Scholar
  73. 73.
    Verhoeven, M. A., Creemers, A. F. L., Bovee-Geurts, P. H. M., de Grip, W. J., Lugtenburg, J., and de Groot, H. J. M. (2001) Biochemistry, 40, 3282–3288.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • H. Kandori
    • 1
  • Y. Shichida
    • 2
  • T. Yoshizawa
    • 2
  1. 1.Department of Biophysics, Graduate School of ScienceKyoto UniversityKyotoJapan
  2. 2.Department of Applied ChemistryNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations