Journal of Porous Materials

, Volume 8, Issue 4, pp 273–293

Porous Clays and Pillared Clays-Based Catalysts. Part 2: A Review of the Catalytic and Molecular Sieve Applications

  • Z. Ding
  • J.T. Kloprogge
  • R.L. Frost
  • G.Q. Lu
  • H.Y. Zhu
Article

Abstract

Metal oxide pillared clay (PILC) possesses several interesting properties, such as large surface area, high pore volume and tunable pore size (from micropore to mesopore), high thermal stability, strong surface acidity and catalytic active substrates/metal oxide pillars. These unique characteristics make PILC an attractive material in catalytic reactions. It can be made either as catalyst support or directly used as catalyst. This paper is a continuous work from Kloprogge's review (J.T. Kloprogge, J. Porous Mater. 5, 5 1998) on the synthesis and properties of smectites and related PILCs and will focus on the diverse applications of clay pillared with different types of metal oxides in the heterogeneous catalysis area and adsorption area. The relation between the performance of the PILC and its physico-chemical features will be addressed.

catalytic reactions adsorption PILC porous structures surface acidity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.W. Brindley and R.E. Sempels, Clay Miner. 12, 229 (1977).Google Scholar
  2. 2.
    S. Yamanaka and G.W. Brindley, Clays Clay Miner. 26, 21 (1978).Google Scholar
  3. 3.
    D.E.W. Vaughan, Catal. Today 2, 187 (1988).Google Scholar
  4. 4.
    T.J. Pinnavaia, Science 220, 365 (1983).Google Scholar
  5. 5.
    J.T. Kloprogge, J. Porous Mater. 5, 5 (1998).Google Scholar
  6. 6.
    A. Gil, L.M. Gandia, and M.A. Vicente, Catal. Rev. Sci. Eng. 42, 145 (2000).Google Scholar
  7. 7.
    S. Chevalier, R. Franck, H. Suquet, J.F. Lambert, and D. Barthomeuf, J. Chem. Soc. Faraday Trans. 90, 667 (1994).Google Scholar
  8. 8.
    H. Auer and H. Hofmann, Appl. Catal. A 97, 23 (1993).Google Scholar
  9. 9.
    S.A. Zubkov, L.M. Kustov, V.B. Kazansky, G. Fetter, D. Tichit, and F. Figueras, Clays Clay Miner. 42, 421 (1994).Google Scholar
  10. 10.
    W.Q. Liu, L. Zhao, G.D. Sun, and E.Z. Min, Catal. Today 51, 135 (1999).Google Scholar
  11. 11.
    I. Benito, A.D. Riego, M. Martinez, C. Blanco, C. Pesquera, and F. Gonzalez, Appl. Catal. A 180, 175 (1999).Google Scholar
  12. 12.
    R. Swarnakar, K.B. Brandt, and R.A. Kydd, Appl. Catal. A 142, 61 (1996).Google Scholar
  13. 13.
    T. Matsuda, H. Nagashima, and E. Kikuchi, Appl. Catal. 45, 171 (1988).Google Scholar
  14. 14.
    A. Corma, Chem. Rev. 97, 2373 (1997).CrossRefPubMedGoogle Scholar
  15. 15.
    H. Ming-Yuan, L. Zhonghui, and M. Enze, Catal. Today 2, 321 (1988).Google Scholar
  16. 16.
    R. Mokaya and W. Jones, J. Chem. Soc. Chem. Comm. 8, 929 (1994).Google Scholar
  17. 17.
    R. Mokaya and W. Jones, J. Catal. 153, 76 (1995).Google Scholar
  18. 18.
    R. Mokaya, W. Jones, M.E. Davies, and M.E. Whittle, J. Am. Oil Chem. Soc. 70, 241 (1993).Google Scholar
  19. 19.
    P. Falaras, F. Lezou, G. Seiragakis, and D. Petrakis, Clays Clay Miner. 48, 549 (2000).Google Scholar
  20. 20.
    F. Kooli and W. Jones, J. Mater. Chem. 8, 2119 (1998).Google Scholar
  21. 21.
    M.L. Occelli, J.V. Senders, and J. Lynch, J. Catal. 107, 557 (1987).Google Scholar
  22. 22.
    L.S. Cheng and R.T. Yang, Microporous Mater. 8, 177 (1997).Google Scholar
  23. 23.
    A. Gil, A. Massinon, and P. Grange, Microporous Mater. 4, 369 (1995).Google Scholar
  24. 24.
    A. Gil and M. Montes, J. Mater. Chem. 4, 1491 (1994).Google Scholar
  25. 25.
    J. Sterte, Clays Clay Miner. 39, 167 (1991).Google Scholar
  26. 26.
    J. Sterte, in Preparation of Catalysts V., edited by G. Poncelet, P.A. Jacobs, P. Grange, and B. Delmon (Elsevier Science, Amsterdam, 1991), p. 301.Google Scholar
  27. 27.
    E. Booij, J.T. Kloprogge, and J.A.R.v. Veen, Appl. Clay Sci. 11, 155 (1996).Google Scholar
  28. 28.
    E. Booij, J.T. Kloprogge, and J.A.R.v. Veen, Clays Clay Miner. 44, 744 (1996).Google Scholar
  29. 29.
    J.H. Choy, J.H. Park, and J.B. Yoon, J. Phys. Chem. B 102, 5991 (1998).Google Scholar
  30. 30.
    Y.S. Han, S. Yamanaka, and J.H. Choy, Appl. Catal. A 174, 83 (1998).Google Scholar
  31. 31.
    Y.S. Han, H. Matsumoto, and S. Yamanaka, Chem. Mater. 9, 2013 (1997).Google Scholar
  32. 32.
    A. Galarneau, A. Barodawalla, and T.J. Pinnavaia, Nature 374, 529 (1995).CrossRefGoogle Scholar
  33. 33.
    Y.S. Han and J.H. Choy, J. Mater. Chem. 8, 1459 (1998).Google Scholar
  34. 34.
    H.Y. Zhu, Z. Ding, and G.Q. Lu, in Studies in Surface Science and Catalysis 129-Nanoporous Materials II, vol. 129, edited by A. Sayari, M. Jaroniec, and T.J. Pinnavaia (Elsevier Science, Banff, 2000), p. 425.Google Scholar
  35. 35.
    Z. Ding, H.Y. Zhu, G.Q. Lu, and P.F. Greenfield, J. Colloid & Interface Sci. 209, 193 (1999).Google Scholar
  36. 36.
    S.J. Gregg and K.S.W. Sing, Adsorption, Surface Area and Porosity, 2nd edn. (Academic Press, New York, 1982).Google Scholar
  37. 37.
    H.Y. Zhu, Q. Ma, and G.Q. Lu, J. Porous Mater. 6, 135 (1999).Google Scholar
  38. 38.
    S.A. Bagshaw and R.P. Cooney, Chem. Mater. 7, 1384 (1995).Google Scholar
  39. 39.
    K.B. Brandt and R.A. Kydd, Chem. Mater. 9, 567 (1997).Google Scholar
  40. 40.
    S.M. Bradley and R.A. Kydd, Catal. Lett.8, 185 (1991).Google Scholar
  41. 41.
    F. Gonzalez, C. Pesquera, C. Blanco, I. Benito, and S. Mendioroz, Inorg. Chem. 31, 727 (1992).Google Scholar
  42. 42.
    S.P. Katdare, V. Ramaswamy, and A.V. Ramaswamy, Catal. Today 49, 313 (1999).Google Scholar
  43. 43.
    S.P. Katdare, V. Ramaswamy, and A.V. Ramaswamy, Microporous and Mesoporous Mater. 37, 329 (2000).Google Scholar
  44. 44.
    S.M. Bradley, R.A. Kydd, and K.K. Brandt, Progress in Catal. 287 (1992).Google Scholar
  45. 45.
    C. Pesquera, F. Gonzalez, M.J. Hernando, C. Blanco, and I. Benito, React. Kinet. Catal. Lett. 55, 267 (1995).Google Scholar
  46. 46.
    F. Gonzalez, C. Pesquera, I. Benito, S. Mendioroz, and G. Poncelet, J. Chem. Soc. Chem. Commun. 491 (1992).Google Scholar
  47. 47.
    J.F. Brody and J.W. Johnson, in Proc.Symp.on Synthesis and Properties of New Catalysts: Utilization of Novel Materials Components and Synthetic Techniques.Fall Meeting MRS, edited by E.W. Corcoran and M.J. Ledoux (Boston, 1990), p. 65.Google Scholar
  48. 48.
    R. Burch, Catal. Today 2, 185 (1988).Google Scholar
  49. 49.
    M.L. Occelli, in Proceedings of the International Clay Conference, edited by L.G. Schultz, H. van Olphen, and F.A. Mumpton (The Clay Minerals Society, Denver, 1985), p. 319.Google Scholar
  50. 50.
    D.E.W. Vaughan, R.J. Lussier, and J.S. Magee, U.S. Patent, 4,176,090 (1979).Google Scholar
  51. 51.
    T. Mishra and K. Parida, Appl. Catal. A 166, 123 (1998).Google Scholar
  52. 52.
    D. Zhao, Y. Yang, and X. Guo, Zeolites 15, 58 (1995).Google Scholar
  53. 53.
    S.M. Bradley and R.A. Kydd, J. Catal. 141, 239 (1993).Google Scholar
  54. 54.
    K.B. Brandt and R.A. Kydd, Appl. Catal. A 165, 327 (1997).Google Scholar
  55. 55.
    S.P.R. Katikaneni, J.D. Adjaye, and N.N. Bakhshi, Canadian J. Chem. Eng. 73, 484 (1995).Google Scholar
  56. 56.
    M.L. Occelli, Ind. Eng. Chem. Prod. Res. Dev. 22, 553 (1983).Google Scholar
  57. 57.
    M.S. Tzou and T.J. Pinnavaia, Catal. Today 2, 243 (1988).Google Scholar
  58. 58.
    C. Doblin, J.F. Mathews, and T.W. Turney, Catal. Lett. 23, 151 (1994).Google Scholar
  59. 59.
    C. Doblin, J.F. Mathews, and T.W. Turney, Appl. Catal. 70, 197 (1991).Google Scholar
  60. 60.
    M.L. Occelli and R.J. Rennard, Catal. Today 2, 309 (1988).Google Scholar
  61. 61.
    S. Moreno, R.S.Kou, and G. Poncelet, J. Catal. 162, 198 (1996).Google Scholar
  62. 62.
    S. Moreno, R.S. Kou, and G. Poncelet, J. Phys. Chem. B 101, 1569 (1997).Google Scholar
  63. 63.
    S. Moreno, E. Gutierrez, A. Alvarez, N.G. Papayannakos, and G. Poncelet, Appl. Catal. A 165, 103 (1997).Google Scholar
  64. 64.
    S. Moreno, R.S.Kou, R. Molina, and G. Poncelet, J. Catal. 182, 174 (1999).Google Scholar
  65. 65.
    J.R. Jones and J.H. Purnell, Catal. Lett. 28, 283 (1994).Google Scholar
  66. 66.
    H.L. Del Castillo and P. Grange, Appl. Catal. A 103, 23 (1993).Google Scholar
  67. 67.
    K. Lourvanij and G.L. Rorrer, J. Chem. Tech. Biotech. 69, 35 (1997).Google Scholar
  68. 68.
    T. Mishra and K. Parida, Appl. Catal. A 174, 91 (1998).Google Scholar
  69. 69.
    A. Louloudi and N. Papayannakos, Appl. Catal. A 175, 21 (1998).Google Scholar
  70. 70.
    A. Louloudi and N. Papayannakos, Appl. Catal. A204, 167 (2000).Google Scholar
  71. 71.
    A. Gil and M. Montes, Ind. Eng. Chem. Res. 36, 1431 (1997).Google Scholar
  72. 72.
    Y. Wang and W. Li, React. Kinet. Catal. Lett. 69, 169 (2000).Google Scholar
  73. 73.
    A. Geatti, M. Lenarda, L. Storaro, R. Ganzerla, and M. Perissinotto, J. Mol. Catal. A: Chem. 121, 111 (1997).Google Scholar
  74. 74.
    K. Lourvanij and G.L. Rorrer, Appl. Catal. A 109, 147 (1994).Google Scholar
  75. 75.
    A. Gil, H.L. Del Castillo, J. Masson, J. Court, and P. Grange, J. Mol. Catal. A: Chem. 107, 185 (1996).Google Scholar
  76. 76.
    H.L. Del Castillo, A. Gil, and P. Grange, Clays and Clay Miner. 44, 706 (1996).Google Scholar
  77. 77.
    A. Gil and M. Montes, React. Kinet. Catal. Lett. 56, 47 (1995).Google Scholar
  78. 78.
    T. Mishra and K.M. Parida, J. Mol. Catal. A: Chem. 121, 91 (1997).Google Scholar
  79. 79.
    J.R. Butruille and T.J. Pinnavaia, Catal. Today 14, 141 (1992).Google Scholar
  80. 80.
    K. Suzuki, T. Mori, K. Kawase, H. Sakami, and S. Lida, J. Chem. Soc. Chem. Comm. 122 (1988).Google Scholar
  81. 81.
    K. Suzuki and T. Mori, Appl. Catal. 63, 181 (1990).Google Scholar
  82. 82.
    M. Trombetta, G. Busca, M. Lenarda, L. Storaro, R. Ganzerla, L. Piovesan, A.J. Lopez, M.A. Rodriguez, and E.R. Castellon, Appl. Catal. A 193, 55 (2000).Google Scholar
  83. 83.
    R. Issaadi, F. Garin, C.E. Chitour, and G. Maire, Appl. Catal. A 207, 323 (2001).Google Scholar
  84. 84.
    T.J. Pinnavaia, M. Rameswaran, E.D. Dimotakis, E.P. Giannelis, and E.G. Rightor, Faraday Discuss. Chem. Soc. 87, 227 (1989).Google Scholar
  85. 85.
    R.S. Varma and D. Kumar, Catal. Lett. 53, 225 (1998).Google Scholar
  86. 86.
    R.S. Varma and K.P. Naicker, Tetrahedron Lett. 39, 2915 (1998).Google Scholar
  87. 87.
    S. Wang, H.Y. Zhu, and G.Q. Lu, J. Colloid & Interface Sci. 204, 128 (1998).Google Scholar
  88. 88.
    R.T. Yang, J.P. Chen, E.S. Kikkinides, L.S. Cheng, and J.E. Cichanowicz, Ind. Eng. Chem. Res. 31, 1440 (1992).Google Scholar
  89. 89.
    L.S. Cheng, R.T. Yang, and N. Chen, J. Catal. 164, 70 (1996).Google Scholar
  90. 90.
    R.T. Yang, N. Tharappiwattananon, and R.Q. Long, Appl. Catal. B 19, 289 (1998).Google Scholar
  91. 91.
    R.Q. Long and R.T. Yang, J. Catal. 186, 254 (1999).Google Scholar
  92. 92.
    R.Q. Long and R.T. Yang, Appl. Catal. B 24, 13 (2000).Google Scholar
  93. 93.
    R.Q. Long, R.T. Yang, and K.D. Zammit, J. Air & Waste Manage. Assoc. 50, 436 (2000).Google Scholar
  94. 94.
    R.Q. Long and R.T. Yang, Catal. Lett. 59, 39 (1999).Google Scholar
  95. 95.
    H.J. Chae, I.S. Nam, Y.G. Kim, H.S. Yang, H.C. Choi, and S.L. Song, in Porous Materials in Environmentally Friendly Processes, edited by I. Kiricsi, G. Pal-Borbely, J.B. Nagy, and H.G. Karge (Elsevier Science, Hungary, 1999), vol. 125, p. 595.Google Scholar
  96. 96.
    D.T.B. Tennakoon, W. Jones, and J.M. Thomas, J. Chem. Soc. Faraday Trans. 82(1), 3081 (1986).CrossRefGoogle Scholar
  97. 97.
    C. Yokoyama and M. Misono, J. Catal.150, 9 (1994).CrossRefGoogle Scholar
  98. 98.
    M. Shelef, Catal. Lett. 15, 305 (1992).Google Scholar
  99. 99.
    M.D. Amiridis, T. Zhang, and R.J. Farrauto, Appl. Catal. B 10, 203 (1996).Google Scholar
  100. 100.
    M. Sirilumpen, R.T. Yang, and N. Tharapiwattananon, J. Mol. Catal. A 137, 273 (1999).Google Scholar
  101. 101.
    W. Li, M. Sirilumpen, and R.T. Yang, Appl. Catal. B 11, 347 (1997).Google Scholar
  102. 102.
    K.M. Eriksen, C.K. Jensen, S.B. Rasmussen, C. Oehlers, B.S. Bal'zhinimaev, and R. Fehrmann, Catal. Today 54, 465 (1999).Google Scholar
  103. 103.
    R.Q. Long and R.T. Yang, J. Catal. 190, 22 (2000).Google Scholar
  104. 104.
    R.Q. Long and R.T. Yang, Appl. Catal. B 27, 87 (2000).Google Scholar
  105. 105.
    J.P. Chen and R.T. Yang, Chem. Eng. Comm. 152-153, 161 (1996).Google Scholar
  106. 106.
    K. Bahranowski, J. Janas, T. Machej, E.M. Serwicka, and L.A. Vartikian, Clay Miner. 32, 665 (1997).Google Scholar
  107. 107.
    C. Philippopoulos, N. Gangas, and N. Papayannakos, J. Mater. Sci. Lett. 15, 1940 (1996).Google Scholar
  108. 108.
    J.T. Kloprogge, W.J.J. Welters, E. Booy, V.H.J. de Beer, R.A. van Santen, J.W. Geus, and J.B.H. Jansen, Appl. Catal. A 97, 77 (1993).Google Scholar
  109. 109.
    M. Sychev, V.H.J. de Beer, A. Kodentsov, E.M. van Oers, and R.A. van Santen, J. Catal. 168, 245 (1997).Google Scholar
  110. 110.
    C.E. Ramos-Galvan, G. Sandoval-Robles, A. Castillo-Mares, and J.M. Dominguez, Appl. Catal. A 150, 37 (1997).Google Scholar
  111. 111.
    K. Bahranowski, R. Dula, M. Labanowska, and E.M. Serwicka, Appl. Spectroscopy 50, 1439 (1996).Google Scholar
  112. 112.
    K. Bahranowski, M. Gasior, A. Kielski, J. Podobinski, E.M. Serwicka, L.A. Vartikian, and K. Wodnicka, Clays and Clay Miner. 46, 98 (1998).Google Scholar
  113. 113.
    M.L. Kantam, B. Kavita, and F. Figueras, Catal. Lett. 51, 113 (1998).Google Scholar
  114. 114.
    B.M. Choudary, M.L. Kantam, M. Sateesh, K.K. Rao, and P.L. Santhi, Appl. Catal. A 149, 257 (1997).Google Scholar
  115. 115.
    D.H.F. Liu, B.G. Liptak, and P.A. Bouis, Environmental Engineers' Handbook, 2nd edn. (Lewis, Boca Raton, 1997), p. 1431.Google Scholar
  116. 116.
    C. Baird, Environmental Chemistry, 2nd edn. (W. H. Freeman and Company, New York, 1998).Google Scholar
  117. 117.
    O. Legrini, E. Oliveros, and A.M. Braun, Chem. Rev. 93, 671 (1993).Google Scholar
  118. 118.
    K. Rajeshwar, Chem. Ind. 454 (1996).Google Scholar
  119. 119.
    L. Lei, X. Hu, and P.L. Yue, Wat. Res. 32, 2753 (1998).Google Scholar
  120. 120.
    D.F. Ollis, E. Pelizzetti, and N. Serpone, Environ. Sci. Tech. 25, 1522 (1991).Google Scholar
  121. 121.
    R.W. Matthews, in Photocatalytic Purification and Treatment ofWater and Air, edited by D.F. Ollis and H. Al-Ekabi (Elsevier Science, Lausanne, 1993), p. 121.Google Scholar
  122. 122.
    A.L. Linsebigler, G. Lu, and J.J.T. Yates, Chem. Rev. 95, 735 (1995).Google Scholar
  123. 123.
    M. Schiavello, Heterogeneous Photocatalysis (John Wiley & Sons, Chichester, 1997).Google Scholar
  124. 124.
    L. Lei, X. Hu, H.P. Chu, G. Chen, and P.L. Yue,Wat. Sci. Tech. 35, 311 (1997).Google Scholar
  125. 125.
    A. Sclafani, L. Palmisano, and M. Schiavello, J. Phys. Chem. 94, 829 (1990).Google Scholar
  126. 126.
    N. Serpone, Solar Energy Mater. Solar Cells 38, 369 (1995).Google Scholar
  127. 127.
    L. Lei, X. Hu, P.L. Yue, S.H. Bossmann, S. Gob, and A.M. Braun, J. Photochem. Photobiol. A: Chem. 116, 159 (1998).Google Scholar
  128. 128.
    J. Barrault, C. Bouchoule, K. Echachoui, N. Frini-Srasra, M. Trabelsi, and F. Bergaya, Appl. Catal. B 15, 269 (1998).Google Scholar
  129. 129.
    H. Yoneyama, S. Haga, and S. Yamanaka, J. Phys. Chem. 93, 4833 (1989).Google Scholar
  130. 130.
    C. Ooka, S. Akita, Y. Ohashi, T. Horiuchi, K. Suzuki, S.Komai, H. Yoshida, and T. Hattori, J. Mater. Chem. 9, 2943 (1999).Google Scholar
  131. 131.
    H. Yoshida, T. Kawase, Y. Miyashita, C. Murata, C. Ooka, and T. Hattori, Chem. Lett. 8, 715 (1999).Google Scholar
  132. 132.
    S. Cheng, Catal. Today 49, 303 (1999).Google Scholar
  133. 133.
    S. Cheng, S.J. Tsai, and Y.F. Lee, Catal. Today 26, 87 (1995).Google Scholar
  134. 134.
    J. Barrault, M. Abdellaoui, C. Bouchoule, A. Majeste, J.M. Tatibouet, A. Louloudi, N. Papayannakos, and N.H. Gangas, Appl. Catal. B 27, L225 (2000).Google Scholar
  135. 135.
    L. Storaro, R. Ganzerla, M. Lenarda, and R. Zanoni, J. Mol. Catal. A: Chem. 97, 139 (1995).Google Scholar
  136. 136.
    L. Storaro, M. Lenarda, R. Ganzerla, and A. Rinaldi, Microporous Mater. 6, 55 (1996).Google Scholar
  137. 137.
    L. Storaro, R. Ganzerla, M. Lenarda, R. Zanoni, A.J. Lopez, P. Olivera-Pastor, and E.R. Castellon, J. Mol. Catal. A: Chem. 115, 329 (1997).Google Scholar
  138. 138.
    G. Xomeritakis and Y.S. Lin, J. Membrane Sci. 120, 261 (1996).Google Scholar
  139. 139.
    J. Caro, M. Noack, and P. Kolsch, Microporous and Mesoporous Mater. 22, 321 (1998).Google Scholar
  140. 140.
    R.S.A. de Lange, K. Keizer, and A.J. Burggraaf, J. Membrane Sci. 104, 81 (1995).Google Scholar
  141. 141.
    S. Vercauteren, K. Keizer, E.F. Vansant, J. Luyten, and R. Leysen, J. Porous Mater. 5, 241 (1998).Google Scholar
  142. 142.
    R.S.A. de Lange, J.H.A. Hekkink, K. Keizer, and A.J. Burggraaf, J. Membrane Sci. 99, 57 (1995).Google Scholar
  143. 143.
    B.N. Nair, K. Keizer, W.J. Elferink, M.J. Gilde, H. Verweij, and A.J. Burggraaf, J. Membrane Sci. 116, 161 (1996).Google Scholar
  144. 144.
    S. Vercauteren, J. Luyten, R. Leysen, and E.F. Vansant, J. Membrane Sci. 119, 161 (1996).Google Scholar
  145. 145.
    S. Vercauteren, M. Vayer, H. Van Damme, J. Luyten, R. Leysen, and E.F. Vansant, Colloids and Surfaces A 138, 367 (1998).Google Scholar
  146. 146.
    J. Luyten, J. Cooymans, C. Smolders, S. Vercauteren, E.F. Vansant, and R. Leysen, J. European Ceramic Soc. 17, 273 (1997).Google Scholar
  147. 147.
    P. Sylvester and A. Clearfield, Separation Sci. Technol. 33, 1605 (1998).Google Scholar
  148. 148.
    P. Sylvester, A. Clearfield, and R.J. Diaz, Separation Sci. Technol. 34, 2293 (1999).Google Scholar
  149. 149.
    W. Matthes, F.T. Madsen, and G. Kahr, Clays and Clay Miner. 47, 617 (1999).Google Scholar
  150. 150.
    D.T. Karamanis, X.A. Aslanoglou, P.A. Assimakopoulos, N.H. Gangas, A. A. Pakou, and N.G. Papayannakos, Clays and Clay Miner. 45, 709 (1997).Google Scholar
  151. 151.
    L. Margulies, H. Rozen, and E. Cohen, Nature 315, 658 (1985).Google Scholar
  152. 152.
    L. Margulies, T. Stern, and B. Rubin, J. Agric. Food Chem. 42, 1223 (1994).Google Scholar
  153. 153.
    R. Kume, S. Tashima, K. Matsumoto, I. Ando, and T. Shiraishi, J. Pesticide Sci. 21, 438 (1996).Google Scholar
  154. 154.
    R. Kume, S. Tashima, K. Matsumoto, I. Ando, and T. Shiraishi, J. Pesticide Sci. 21, 404 (1996).Google Scholar
  155. 155.
    Z. Gerstl, A. Nasser, and U. Mingelgrin, J. Agric. Food Chem. 46, 3803 (1998).Google Scholar
  156. 156.
    Y.G. Mishael, G. Rytwo, S. Nir, M. Crespin, F. Annabi-Bergaya, and H.V. Damme, J. Colloid & Interface Sci. 209, 123 (1999).Google Scholar
  157. 157.
    Z. Gerstl, A. Nasser, and U. Mingelgrin, J. Agric. Food Chem. 46, 3797 (1998).Google Scholar
  158. 158.
    A. Nasser, M. Gal, Z. Gerstl, U. Mingelgrin, S.Yariv, J. Thermal Anal. 50, 257 (1997).Google Scholar
  159. 159.
    R. Mokaya, W. Jones, M.E. Davies, and M.E. Whittle, J. Mater. Chem. 3, 381 (1993).Google Scholar
  160. 160.
    E. Montarges, A. Moreau, and L.J. Michot, Appl. Clay Sci. 13, 165 (1998).Google Scholar
  161. 161.
    L.J. Michot and T.J. Pinnavaia, Chem. Mater. 4, 1433 (1992).Google Scholar
  162. 162.
    L.J. Michot, O. Barres, E.L. Hegg, and T.J. Pinnavaia, Langmuir 9, 1794 (1993).Google Scholar
  163. 163.
    E. Montarges, L.J. Michot, F. Lhote, T. Fabien, and F. Villieras, Clays and Clay Miner. 43, 417 (1995).Google Scholar
  164. 164.
    L.J. Michot and T.J. Pinnavaia, Clays and Clay Miner. 39, 634 (1991).Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Z. Ding
    • 1
  • J.T. Kloprogge
    • 1
  • R.L. Frost
    • 1
  • G.Q. Lu
    • 2
  • H.Y. Zhu
    • 2
  1. 1.Centre for Instrumental and Developmental ChemistryQueensland University of TechnologyBrisbaneAustralia
  2. 2.Department of Chemical EngineeringUniversity of QueenslandBrisbaneAustralia

Personalised recommendations