Advertisement

Hydrobiologia

, Volume 460, Issue 1–3, pp 141–145 | Cite as

Marine ecosystems and cholera

  • Rita Colwell
  • Anwar Huq
Article

Abstract

Historically, most of the major epidemics or outbreaks of cholera around the world have originated in coastal regions. The most dramatic of recent outbreaks of cholera occurred in India and Bangladesh in 1991, followed by an outbreak of cholera after almost a century without cholera in South America in 1991. Both of these recent epidemics were reported first in the coastal regions of India and Peru, respectively. Cholera epidemics are seasonal, occurring during the spring and fall months. Outbreaks of cholera in noncholera epidemic areas have been ascribed to travel and shipping activities, but there is compelling evidence that V. cholerae always is present in the aquatic environment and proliferates under nonepidemic conditions while attached to, or associated with, eucaryotic organisms. It is hypothesized that climate directly influences the incidence and geographic distribution of the cholera bacterium.

Vibrio cholerae cholera marine ecology climate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berbeiri, E., L. Falzano, C. Florentini, A. Pianetti, W. Baffone, A. Fabbri, P. Matarrese, A. Caseire, M. Katouli, I. Kuhn, R. Mollby, F. Bruscolini & G. Donelli, 1999. Occurrence, diversity, and pathogenicity of halophilic Vibrio spp. and non-01 V. cholerae from estuarine waters along the Italian Adriatic Coast. Appl. envir. Microbiol. 65: 2748–2753.Google Scholar
  2. Brayton, P. R. & R. R. Colwell, 1987. Fluorescent antibody staining method for the enumeration of viable but nonculturable V. cholerae. J. Microbiol. Meth. 6: 309–314.Google Scholar
  3. Carlton, J. T. & J. B. Geller, 1993. Ecological Roulette: the global transport of nonindigenous marine organisms. Science 261: 78–82.Google Scholar
  4. Chakraborty, S., A. K. Mukhopadhyay, R. K. Bhadra, A. N. Ghosh, R. Mitra, T. Shimada, S. Yamasaki, S. M. Faruque, Y. Takeda, R. R. Colwell & G. B. Nair, 2000. Virulence Genes in Environmental Strains of Vibrio cholerae. Appl. envir. Microbiol. 66: 4022–4028.Google Scholar
  5. Cholera Working Group, International center for Diarrhoeal Diseases Research, Bangladesh, 1993. Large epidemic of choleralike disease in Bangladesh caused by Vibrio cholerae 0139 synonym Bengal. Lancet. 342: 387–390.Google Scholar
  6. Chowdhury, M. A. R., B. Xu, R. Montilla, J. A. K. Hasan, A. Huq & R. R. Colwell. 1995. A simplified immunofluorescence technique for detection of viable cells of V. cholerae 01 and 0139. J. Microbiol. Meth. 24: 165–170.Google Scholar
  7. Chun, J., A. Huq & R. R. Colwell, 1999. Identification of Vibrio cholerae based on genes coding for 16S–23S rRNA internal transcriber spacers. Appl. envir. Microbiol. 65: 2202–2208.Google Scholar
  8. Colwell, R. R., 1996. Global climate and infectious disease: the cholera paradigm. Science 274: 2025–2031.Google Scholar
  9. Colwell, R. R. & A. Huq, 1994. Vibrios in the environment: viable but nonculturable Vibrio cholerae. In Wachsmuth, I. K., O. Olsvik & P. A. Blake (eds), Vibrio cholerae and Cholera: Molecular to Global Perspectives. American Society for Microbiology, Washington, D.C.: Chapter 9, 117–133.Google Scholar
  10. Colwell, R. R. & A. Huq, 1999. Global microbial ecology: biogeography and diversity of vibrios as a model. J. Appl. Microbiol. Sym. Suppl. 85: 134–137.Google Scholar
  11. Colwell, R. R., A. Huq, M. A. R. Chowdhury, P. Brayton & B. Xu, 1995. Serogroup conversion of V. cholerae. Can. J. Microbiol. 41: 946–950.Google Scholar
  12. Colwell, R. R., R. Seidler, J. Kaper, S. W. Joseph, S. Garges, H. Lockman, D. Maneval, H. Bradford, N. Roberts, E. Remmers, I. Huq & A. Huq, 1981. Occurrence of V. cholerae serotype 01 in Maryland and Louisiana estuaries. Appl. envir. Microbiol. 41: 555–558.Google Scholar
  13. Desmarchelier, P. M., F. Y. K. Wong & K. Mallard, 1995. An epidemiological study of V. cholerae 01 in the Australian environment based on the RNA gene polymorphism. Epidemiol. Infect. 115: 435–446.Google Scholar
  14. Dumontet, S., K. Krovacek, S. B. Baloda, R. Grottoli, V. Pasquale & S. Vanneci, 1996. Ecological relationship between Aeromonas and Vibrio spp. and planktonic copepods in the coastal marine environment in Southern Italy. Comp. Immunol. Microbiol. Infect. Dis. 19: 245–254.Google Scholar
  15. From Monsoon to Microbes, 1999. Understanding the Ocean's Role in Human Health. National Acad. Press: 18 pp.Google Scholar
  16. Gil, A., A. Huq, C. F. Lanat, D. N. Taylor, R. Orozco, I. N. G. Rivera, J. Patz & R. R. Colwell, 1999. Environmental sources of Vibrio cholerae on the Peruvian Coast. US-Japan Cholera Conference, Dec 2–5, 1999, Baltimore, Maryland.Google Scholar
  17. Goma Epidemiology Group, 1995. Public health impact of Rwandan refugee crisis: What happened in Goma, Zaire in July, 1994? The Lancet. 345: 339–344.Google Scholar
  18. Herrington, D. A., R. H. Hall, G. Losonsky, J. J. Mekalanos, R. K. Taylor & M. M. Levine, 1988. Toxin, toxin-corregulated pili and ToxR regulation are essential for Vibrio cholerae pathogenesis in humans. J. exp. Med. 168: 1487–1492.Google Scholar
  19. Huq, A. & R. R. Colwell, 1996. Vibrios in the marine and estuarine environment: Tracking of Vibrio cholerae. J. Ecosyst. Hlth. 2: 198–214.Google Scholar
  20. Huq, A., E. Lipp & R. R. Colwell, 2001. Cholera. Encyclopedia of Environmental Microbiology (In press).Google Scholar
  21. Huq, A., J. A. K. Hasan, G. Losonsky & R. R. Colwell, 1994. Occurrence of toxigenic V. cholerae 01 and V. cholerae non-01 in professional divers and dive sites in the United States, Ukraine, and Russia. FEMS Microbiol. Lett. 120: 137–142.Google Scholar
  22. Huq, A., E. B. Small, P. A. West, R. Rahman & R. R. Colwell, 1983. Ecology of V. cholerae with special reference to planktonic crustacean copepods. Appl. envir. Microbiol. 45: 275–283.Google Scholar
  23. Huq, A., M. A. R. Chowdhury, A. Felsenstein, R. R. Colwell, R. Rahman & K. M. B. Hossain, 1988. Detection of V. cholerae from aquatic environments in Bangladesh. In Yasuno, M. & B. A. Whitton (eds), Biological Monitoring of Environment Pollution. Tokai University Press, Tokyo, Japan: 259–264.Google Scholar
  24. Huq, A., P. A. West, E. B. Small, A. Huq & R. R. Colwell, 1984. Influence of water temperature, salinity and pH on survival and growth of toxigenic Vibrio cholerae 01 associated with live copepods in laboratory microcosms. Appl. envir. Microbiol. 48: 420–424.Google Scholar
  25. Huq, A., R. R. Colwell, R. Rahman, A. Ali, M. A. R. Chowdhury, S. Parveen, D. A. Sack & E. Russek-Cohen, 1990. Detection of V. cholerae 01 in the aquatic environment by fluorescent monoclonal antibody and culture methods. Appl. envir. Microbiol. 56: 2370–2373.Google Scholar
  26. Islam, M. S., B. S Draser & D. J. Bradley, 1990. Long-term persistence of toxigenic V. cholerae 01 in the mucilaginous sheath of a blue-green alga. Anabaena variabilis. J. Trop. Med. Hyg. 93: 133–9.Google Scholar
  27. Jiang, S. C., V. Louis, N. Choopun, A. Sharma, A. Huq & R. R. Colwell, 2000a. Genetic diversity of Vibrio cholerae in Chesapeake Bay determined by Amplified Fragment Length Polymorphism (AFLP). Appl. envir. Microbiol. 66: 140–147.Google Scholar
  28. Jiang, S. C., M. Matte, G. Matte, A. Huq & R. R. Colwell, 2000b. Genetic diversity of clinical and environmental isolates of Vibrio cholerae determined by Amplified Fragment Length Polymorphism fingerprinting. Appl. envir. Microbiol. 66: 148–153.Google Scholar
  29. Kaper, J., H. Lockman, S. W. Joseph & R. R. Colwell, 1979. Ecology serology and enterotoxin production of Vibrio cholerae in Chesapeake Bay. Appl. envir. Microbiol. 37: 91–103.Google Scholar
  30. Karaolis, D. K. R., R. Lan & P. R. Reeves, 1995. The sixth and seventh cholera pandemics are due to independent clones separately derived from environmental, nontoxigenic, non-01 Vibrio cholerae. J. Bacteriol. 177: 3191–3198.Google Scholar
  31. Koch, R., 1884. An address on cholera and its bacillus. Brit. Med. J. 2: 403–407 and 453–9.Google Scholar
  32. Lobitz, B., L. Beck, A. Huq, B. Wood, G. Fuchs, A. S. G. Faruque & R. Colwell, 2000. Climate and infectious disease: use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc. natn. Acad. Sci. 97: 1438–1443.Google Scholar
  33. Miller, C. J., B. S. Draser & R. J. Heyes, 1984. Response to toxigenic V. cholerae 01 to physicochemical stresses in aquatic environment. J. Hyg. 93: 475–495.Google Scholar
  34. Oppenheimer, J. R., M. G. Ahmad, A. Huq, K. A. Hague, A. K. M. A. Alam, K. M. S. Aziz, S. Ali & A. S. M. Hague, 1978. Limnological studies in three ponds in Dhaka, Bangladesh. Bangladesh J. Fisheries. 1: 1–28.Google Scholar
  35. Pacini, F., 1854. Osservazioni microscopiche e deduzione patologiche sul colera asiatico. Gaz. Med. Italiana. 6: 405–412. 145Google Scholar
  36. Rivera, I. N. G., J. Chun, A. Huq, R. B. Sack & R. R. Colwell, 2001. Genotypes Associated with Virulence in Environmental Isolates of Vibrio cholerae. Appl. envir. Microbiol. 67: 2421–2429.Google Scholar
  37. Samadi, A. R., N. K. Chowdhury, M. I. Huq & M. U. Khan, 1983. Seasonality of classical and El Tor cholera in Dhaka, Bangladesh: 17 year trends. Trans. r. Soc. Trop. Med. Hyg. 77: 853–856.Google Scholar
  38. Siddique, A. K., K. Zaman, K. Akram, R. Madsudy, A. Eusof & R. B. Sack, 1994. Emergence of a new epidemic strain of V. cholerae in Bangladesh: an epidemiological study. J. Geog. Med. 46: 147–150.Google Scholar
  39. Singh, D. V., M. H. Matte, G. R. Matte, S. Jiang, F. Sabeena, B. N. Shukla, S. C. Sanyal, A. Huq & R. R. Colwell, 2001. Molecular Analysis of Vibrio cholerae 01, 0139, non-01, and non-0139 Strains: Clonal Relationships between Clinical and Environmental Isolates. Appl. envir. Microbiol. 67: 910–921.Google Scholar
  40. Singleton, F. L., R. W. Attwell, M. S. Jangi & R. R. Colwell, 1982. Effects of temperature and salinity on V. cholerae growth. Appl. envir. Microbiol. 44: 1047–1058.Google Scholar
  41. Tamplin, M., A. Gauzens, A. Huq, D. Sack & R. Colwell, 1990. Attachment of Vibrio cholerae Serogroup O1 to Zooplankton and Phytoplankton of Bangladesh Waters. Appl. envir. Microbiol. 56: 1977–1980.Google Scholar
  42. Wachsmuth, I. K., P. A. Blake & O. Olsvik, 1994. Vibrio cholerae and cholera: molecular to global perspectives. Am. Soc. Microbiol. Press, Washington, D.C.Google Scholar
  43. Waldor, M. K. & J. J. Mekalanos, 1994. ToxR regulates virulence gene expression in non-01 strains of Vibrio cholerae that cause epidemic cholera. Infect. Immun. 62: 72–78.Google Scholar
  44. West, P. A. & J. V. Lee, 1982. Ecology of Vibrio spp. including V. cholerae in natural waters of Kent, England. J. Appl. Bacteriol. 52: 435–448.Google Scholar
  45. WHO Report, 1999. Communicable Disease, Surveillance and Response. Web: www.who.int.emc/disease/cholera/choltb l1999.html.Google Scholar
  46. Xu, H. S., N. C. Roberts, F. L. Singleton, R. W. Attwell, D. J. Grimes & R. R. Colwell, 1982. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microbiol Ecol. 8: 313–323.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Rita Colwell
    • 1
  • Anwar Huq
    • 1
  1. 1.Center of Marine BiotechnologyUniversity of Maryland Biotechnology InstituteBaltimoreU.S.A.

Personalised recommendations