Journal of Insect Behavior

, Volume 14, Issue 6, pp 739–757 | Cite as

Exploitation of the Fecal Shield of the Lily Leaf Beetle, Lilioceris lilii (Coleoptera: Chrysomelidae), by the Specialist Parasitoid Lemophagus pulcher (Hymenoptera: Ichneumonidae)

  • Urs SchaffnerEmail author
  • Caroline Müller


We investigated signal sources used by the parasitoid Lemophagus pulcher in locating and accepting larvae of its host, the lily leaf beetle, Lilioceris lilii. Olfactometer bioassays revealed that larvae with fecal shields, larvae without shields, the shield alone, and lily leaves damaged by L. lilii were all attractive to female parasitoids. In contact bioassays, L. pulcher females were attracted to shields and showed ovipositor probing independently of whether the larva underneath was L. lilii or a nonhost, suggesting that the shield plays a primary role in short-range host location and host acceptance by L. pulcher. The attractiveness of the shield is at least partly of a chemical nature, since shield extracts applied to dummies increased contact duration and induced ovipositor probing by L. pulcher. Another putative defense system of L. lilii, i.e., oral discharge which is emitted by disturbed larvae, was also attractive to experienced, but not to naive, female parasitoids. In all other tests, naive and experienced female L. pulcher responded to the same signal sources tested, suggesting that the host-selection behavior of this biological control candidate is governed largely by innate responses to host-associated cues.

Lemophagus pulcher Lilioceris lilii host selection behavior larval shield feces biological control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bernays, E. A., and Chapman, R. F. (1994). Host-Plant Selection by Phytophagous Insects, Chapman and Hall, New York.Google Scholar
  2. de Moraes, C. M., Lewis, W. J., Pare, P. W., Alborn, H. T., and Tumlinson, J. H. (1998). Herbivoreinfested plants selectively attract parasitoids. Nature 393: 570-573.Google Scholar
  3. Dicke, M., and Vet, L. E. M. (1999). Plant-carnivore interactions: Evolutionary and ecological consequences for plant, herbivore and carnivore. In Olff, H., Brown, V. K., and Drent, R. H. (eds.), Herbivores: Between Plants and Predators, Proceedings of 38th Symposium of British Ecological Society, Blackwell, London, pp. 483-520.Google Scholar
  4. Dicke, M., Takabayashi, J., Posthumus, M. A., Schütte, C., and Krips, O. E. (1998). Plantphytoseiid interactions mediated by herbivore-induced plant volatiles:Variation in production of cues and in responses of predatory mites. Review. Exp. Appl. Acarol. 22: 311-333.Google Scholar
  5. Eisner, T., Tassel, E. V., and Carrel, J. E. (1967). Defensive use of a “fecal shield” by a beetle larva. Science 158: 1471-1473.Google Scholar
  6. Godfray, H. C. J. (1994). Parasitoids: Behavioural and Evolutionary Ecology, Princeton University Press, Princeton, NJ.Google Scholar
  7. Gomez, N. E. (1997). The Fecal Shields of Larvae of Tortoise Beetles (Cassidinae: Chrysomelidae): A Role in Chemical Defense Using Plant-Derived Secondary Compounds, Dissertation, Technische Universitaet Carolo-Wilhelmina Braunschweig.Google Scholar
  8. Gomez, N. E., Witte, L., and Hartmann, T. (1999). Chemical defense in larval tortoise beetles: Essential oil composition of fecal shields of Eurypedus nigrosignata and foliage of its hostplant, Cordia currasavica. J. Chem. Ecol. 25: 1007-1027.Google Scholar
  9. Haye, T. (2000). Oekologische Studien zum Parasitoidenkomplex von Lilioceris lilii (Scop.) (Col.: Chrysomelidae) an ausgewaehlten mitteleuropaeischen Standorten. M.S. thesis, University of Kiel, Kiel.Google Scholar
  10. Jaenike, J., and Papaj, D. R. (1992). Learning and patterns of host use in insects. In Roitberg, B. D., and Isman, M. (eds.), Chemical Ecology: Ecological and Evolutionary Perspectives, Chapman and Hall, New York, pp. 245-264.Google Scholar
  11. Kenis, M., Haye, T., Casagrande, R. A., Gold, M. S., and Tewksbury, L. (2000). Biological control of the lily leaf beetle, Lilioceris lilii, in North America, using parasitoids from Europe. Mitteilungen aus der Biologischen Bundesanstalt für Land-und Forstwirtschaft, Berlin-Dalhem 370, p. 292.Google Scholar
  12. Lewis, W. J., and Tumlinson, J. H. (1988). Host detection by chemically mediated associative learning in a parasitic wasp. Nature 331: 257-259.Google Scholar
  13. Lewis, W. J., Jones, R. L., and Redlinger, L. J. (1971). Moth odour: A method of host-finding by Trichogramma evanescens. J. Econ. Entomol. 64: 557-558.Google Scholar
  14. Mattiacci, L., and Dicke, M. (1995). The parasitoid Cotesia glomerata (Hym.: Braconidae) discriminates between first and fifth larval instars of its host Pieris brassicae, on the basis of contact cues from frass, silk, and herbivore-damaged leaf tissue. J. Insect Behav. 8: 485-498.Google Scholar
  15. Meiners, T., Westerhaus, C., and Hilker, M. (2000). Specificity of chemical cues used by a specialist egg parasitoid during host location. Entomol. Exp. Appl. 95: 151-159.Google Scholar
  16. Morton, T. C., and Vencl, F. V. (1998). Larval beetles form a defense from recycled host-plant chemicals discharged as fecal wastes. J. Chem. Ecol. 24: 765-785.Google Scholar
  17. Müller, C. (1999). Chemische Ökologie des Phytophagenkomplexes an Tanacetum vulgare L. (Asteraceae), Dissertation, Freie Universitaet Berlin, Logos-Verlag.Google Scholar
  18. Müller, C., and Hilker, M. (1999). Unexpected reactions of a generalist predator towards defensive devices of cassidine larvae (Col., Chrysomelidae). Oecologia 118: 166-172.Google Scholar
  19. Noldus, L. P. J. J. (1989). Chemical Espionage by Parasitic Wasps: How Trichogramma Species Exploit Moth Sex Pheromone Systems, Ph.D. dissertation, Agricultural University, Wageningen, The Netherlands.Google Scholar
  20. Olmstead, K. L. (1994). Waste products as chrysomelid defences. In Jolivet, P. H., Cox, M. L., and Petitpierre, E. (eds.), Novel Aspects of the Biology of Chrysomelidae, Kluwer Academic, Dordrecht, pp. 311-318.Google Scholar
  21. Olmstead, K. L., and Denno, R. F. (1992). Cost of shield defence for tortoise beetles (Col.: Chrysomelidae). Ecol. Entomol. 17: 237-243.Google Scholar
  22. Olmstead, K. L., and Denno, R. F. (1993). Effectiveness of tortoise beetle larval shields against different predator species. Ecology 74: 1394-1405.Google Scholar
  23. Pasteels, J. M., Braekman, J. C., and Daloze, D. (1988). Chemical defense in the Chrysomelidae. In Jolivet, P., Petitpierre, E., and Hsiao, T. H. (eds.), Biology of Chrysomelidae, Kluwer Academic, Dordrecht, pp. 231-250.Google Scholar
  24. Powell, W., Pennachio, F., Poppy, G. M., and Tremblay, E. (1998). Strategies involved in the location of hosts by the parasitoid Aphidius ervi Haliday (Hym.: Braconidae: Aphidiinae). Biol. Control 11: 104-112.Google Scholar
  25. Quicke, D. J. L. (1997). Parasitic Wasps, Chapman and Hall, London.Google Scholar
  26. Root, R. B., and Messina, F. J. (1983). Defensive adaptations and natural enemies of a casebearing beetle, Exema canadensis (Col.: Chrysomelidae). Psyche 90: 67-80.Google Scholar
  27. Schmitt, M. (1988). The Criocerinae: Biology, phylogeny and evolution. In Jolivet, P., Petitpierre, E., and Hsiao, T. H. (eds.), Biology of Chrysomelidae, Kluwer Academic, Dordrecht, pp. 475-495.Google Scholar
  28. Schoonhoven, L. M., Jermy, T., and van Loon, J. J. A. (1998). Insect-Plant Biology: From Physiology to Evolution, Chapman and Hall, London.Google Scholar
  29. Steidle, J. L. M. (2000). Host recognition cues of the granary weevil parasitoid Lariophagus distinguendus. Entomol. Exp. Appl. 95: 185-192.Google Scholar
  30. Steidle, J. L. M., and Schöller, M. (1997). Olfactory host location and learning in the granary weevil parasitoid Lariophagus distinguendus (Hymenoptera, Pteromalidae). J. Insect Behav. 10: 331-342.Google Scholar
  31. Steinhausen, W. (1950). Vergleichende Morphologie, Biologie und Oekologie der Entwicklungsstadien der in Niedersachsen heimischen Schildkaefer (Cassidinae, Chrysomelidae, Coleoptera) und deren Bedeutung fuer die Landwirtschaft, Dissertation, Technische Hochschule Carolo-Wilhelmina Braunschweig.Google Scholar
  32. Tumlinson, J. H., Turlings, T. C. J., and Lewis, W. J. (1992). The semiochemical complexes that mediate insect parasitoid foraging. Agr. Zool. Rev. 5: 221-252.Google Scholar
  33. Turlings, T.C. J., Waeckers, F. L., Vet, L. E. M., Lewis, W. J., and Tumlinson, J. H. (1993). Learning of host-location cues by hymenopterous parasitoids. In Lewis, A. C., and Papaj, D. R. (eds.), Insect Learning: Ecological and Evolutionary Perspectives, Chapman and Hall, New York, pp. 51-78.Google Scholar
  34. Vencl, F. V., and Morton, T. C. (1998). The shield defence of the sumac flea beetle, Blepharida rhois (Chrysomelidae, Alticinae). Chemoecology 8: 25-32.Google Scholar
  35. Vencl, F. V., Morton, T. C., Mumma, R. O., and Schultz, J. C. (1999). Shield defence of a larval tortoise beetle, J. Chem. Ecol. 25: 549-566.Google Scholar
  36. Weise, J. (1893). Naturgeschichte Insekten Deutschlands. In Erichson, W. F. (ed.), Coleoptera, Chrysomelidae, Vol. 6, Berlin.Google Scholar
  37. Wellso, S. G., and Hoxie, R. P. (1988). Biology of Oulema. In Jolivet, P., Petitpierre, E., and Hsiao, T. H. (eds.), Biology of Chrysomelidae, Kluwer Academic, Dordrecht, pp. 497-511.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  1. 1.CABI Bioscience Centre, 1 Chemin des GrillonsDelémontSwitzerland
  2. 2.Institute of Evolutionary and Ecological SciencesLeiden UniversityLeidenThe Netherlands

Personalised recommendations