Advertisement

Pharmaceutical Research

, Volume 18, Issue 9, pp 1262–1269 | Cite as

Functional Characterization of Human Organic Anion Transporting Polypeptide B (OATP-B) in Comparison with Liver-Specific OATP-C

  • Ikumi Tamai
  • Takashi Nozawa
  • Minako Koshida
  • Jun-ichi Nezu
  • Yoshimichi Sai
  • Akira Tsuji
Article

Abstract

Purpose. To assess the functional characteristics of human organic anion transporter B (OATP-B) in comparison with those of the known, liver-specific OATP-C.

Methods. OATP-B or -C was expressed in HEK293 cells or Xenopus oocytes, and uptakes of estradiol-17β-glucuronide and estrone-3-sulfate were measured using radiolabeled compounds.

Results. OATP-C transported both estrone-3-sulfate and estradiol-17β-glucuronide, whereas OATP-B transported only the former. OATP-C-mediated uptake of estrone-3-sulfate exhibited biphasic saturation kinetics, whereas transports of estradiol-17β-glucuronide by OATP-C and estrone-3-sulafte by OATP-B followed single-saturation kinetics. Inhibition kinetics showed that only the high-affinity site for estrone-3-sulfate on OATP-C was shared with glucuronide conjugates. Uptake of [3H]estrone-3-sulfate by OATP-B was inhibited by sulfate conjugates but not by glucuronide conjugates, whereas its uptake by OATP-C was inhibited by both types of conjugates.

Conclusions. OATP-B accepted sulfate conjugates of steroids but not glucuronide conjugates, whereas OATP-C transported both types of steroid conjugates. Transport of estrone-3-sulfate by OATP-B and -C followed single- and biphasic-saturation kinetics, respectively, and the high-affinity site on OATP-C was the same as that for estradiol-17β-glucuronide. Other OATPs, OATP-A and OATP-8, reportedly exhibit different preferences for steroid conjugates, and the specific recognition of sulfate conjugates seems to be unique to OATP-B.

organic anion transporter OATP estrogen conjugates liver 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. Müller and P. L. M. Jansen. Molecular aspects of hepatobiliary transport. Am. J. Physiol. 272:G1285-G1303 (1997).Google Scholar
  2. 2.
    T. Sekine, S.H. Cha, and H. Endou. The multispecific organic anion transporter (OAT) family. Pflügers Arch. 440:337–350 (2000).Google Scholar
  3. 3.
    H. Yabuuchi, I. Tamai, K. Morita, T. Kouda, K. Miyamoto, E. Takeda, and A. Tsuji. Hepatic sinusoidal membrane transport of anionic drugs mediated by anion transporter Npt1. J. Pharmacol. Exp. Ther. 286:1391–1396 (1998).Google Scholar
  4. 4.
    H. Uchino, I. Tamai, K. Yamashita, Y. Minemoto, Y. Sai, H. Yabuuchi, K. Miyamoto, E. Takeda, and A. Tsuji. p-Aminohippuric acid transport at renal apical membrane mediated by human inorganic phosphate transporter NPT1. Biochem. Biophys. Res. Commun. 270:254–259 (2000).Google Scholar
  5. 5.
    E. Jacquemin, B. Hagenbuch, B. Stieger, A. W. Wolkoff, and P. J. Meier. Expression cloning of a rat liver Na+-independent organic anion transporter. Proc. Natl. Acad. Sci. USA 91:133–137 (1994).Google Scholar
  6. 6.
    A. J. Bergwerk, X. Shi, A. C. Ford, N. Kanai, E. Jacquemin, R. D. Burk, S. Bai, P. M. Novikoff, B. Stieger, P. J. Meier, V. L. Schuster, and A. W. Wolkoff. Immunologic distribution of an organic anion transport protein in rat liver and kidney. Am. J. Physiol. 271:G231-G238 (1996).Google Scholar
  7. 7.
    R. Lu, N. Kanai, Y. Bao, and V. L. Schuster. Cloning, in vitro expression, and tissue distribution of a human prostaglandin transporter cDNA (hPGT). J. Clin. Invest. 98:1142–1149 (1996).Google Scholar
  8. 8.
    T. Abe, M. Kakyo, T. Tokui, R. Nakagomi, T. Nishio, D. Nakai, H. Nomura, M. Unno, M. Suzuki, T. Naitoh, S. Matsuo, and H. Yawo. Identification of a novel gene family encoding human liver-specific organic anion transporter LST-1. J. Biol. Chem. 274:17159–17163 (1999).Google Scholar
  9. 9.
    G. A. Kullak-Ublick, B. Hagenbush, B. Stieger, C. D. Schteingart, A. F. Hoffman, A. W. Wolkoff, and P. J. Meier. Molecular and functional characterization of an organic anion transporting polypeptide cloned from human liver. Gastroenterology 109:1274–1282 (1995).Google Scholar
  10. 10.
    J. Konig, Y. Cui, A. T. Nies, and D. Keppler. Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. J. Biol. Chem. 275:23161–23168 (2000).Google Scholar
  11. 11.
    J, Konig, Y. Cui, A. T. Nies, and D. Keppler. A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am. J. Physiol. 278:G156-G164 (2000).Google Scholar
  12. 12.
    I. Tamai, J. Nezu, H. Uchino, Y. Sai, A. Oku, M. Shimane, and A. Tsuji. Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem. Biophys. Res. Commun. 273:251–260 (2000).Google Scholar
  13. 13.
    B. Hsiang, Y. Zhu, Z. Wang, Y. Wu, V. Sasseville, W.-P. Yang, and T. G. Kirchgessner. A novel human hepatic organic anion transporting polypeptide (OATP-2). J. Biol. Chem. 274:37161–37168 (1999).Google Scholar
  14. 14.
    B. Noé, B. Hagenbuch, B. Stieger, and P. J. Meier. Isolation of a multispecific organic anion and cardiac glycoside transporter from rat brain. Proc. Natl. Acad. Sci. USA 94:10346–10350 (1997).Google Scholar
  15. 15.
    T. Abe, M. Kakyo, H. Sakagami, T. Tokui, T. Nishio, M. Tanemoto, H. Nomura, S. C. Hebert, S. Matsuno, H. Kondo, and H. Yawo. Molecular characterization and tissue distribution of a new organic anion transporter subtype (oatp3) that transports thyroid hormones and taurocholate and comparison with oatp2. J. Biol. Chem. 273:22395–22401 (1998).Google Scholar
  16. 16.
    V. Cattori, B. Hagenbuch, N. Hagenbuch, B. Stieger, R. Ha, K. E. Winterhalter, and P. J. Meier. Identification of organic anion transporting polypeptide 4 (Oatp4) as a major full-length isoform of the liver-specific transporter-1 (rlst-1) in rat liver. FEBS Lett. 474:242–245 (2000).Google Scholar
  17. 17.
    T. Nishio, H. Adachi, R. Nakagomi, T. Tokui, E. Sato, M. Tanemoto, K. Fujiwara, M. Okabe, T. Onogawa, T. Suzuki, D. Nakai, K. Shiiba, M. Suzuki, H. Ohtani, Y. Kondo, M. Unno, S. Ito, K. Iinuma, K. Nunoki, S. Matsuno, and T. Abe. Molecular identification of a rat novel organic anion transporter moat1, which transports prostaglandin D(2), leukotriene C(4), and taurocholate. Biochem. Biophys. Res. Commun. 275:831–838 (2000).Google Scholar
  18. 18.
    P. V. Balimane, I. Tamai, A. Guo, T. akanishi, H. Kitada, F. H. Leibach, A. Tsuji, and P. J. Sinko. Direct evidence for peptide transporter (PepT1)-mediated uptake of a nonpeptide prodrug, valacyclovir. Biochem. Biophys. Res. Commun. 250:246–251 (1998).Google Scholar
  19. 19.
    M. M. Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254 (1976).Google Scholar
  20. 20.
    Y. Cui, J. Konig, I. Inka, U. Buchholz, and D. Keppler. Hepatic uptake of bilirubin and its conjugates by the human organic anion-transporting poly peptide SLC21A6. J. Biol. Chem. 276:9626–9630 (2001).Google Scholar
  21. 21.
    T. Iwatsubo, H. Suzuki, N. Shimada, K. Chiba, T. Ishizaki, C. E. Green, C. A. Tyson, T. Yokoi, T. Kamataki, and Y. Sugiyama. Prediction of in vivo hepatic metabolic clearance of YM796 from in vitro data by use of human liver microsome and recombinant P-450 isozymes. J. Pharmacol. Exp. Ther. 282:909–919 (1997).Google Scholar
  22. 22.
    K. R. Korzekwa, N. Krishnamachary, M. Shou, A. Ogai, R. A. Parise, A. E. Rettie, F. J. Gonzalez, and T. S. Tracy. Evaluation of atypical cytochrome P450 kinetics with two-substrate model: Evidence that multiple substrates can simultaneously bind to cytochrome P450 active sites. Biochemistry 37:4137–4147 (1998).Google Scholar
  23. 23.
    H. Honjo, J. Kitawaki, M. Itoh, J. Yasuda, K. Iwasaku, M. Urabe, K. Naitoh, T. Yamamoto, H. Okada, T. Ohkubo, and T. Nambara. Serum and urinary estrone sulfate during the menstrual cycle, measured by a direct radioimmunoassay, and fate of exogenously injected estrone sulfate. Hormone Res. 27:61–68 (1987).Google Scholar
  24. 24.
    T. Hirohashi, H. Suzuki, and Y. Sugiyama. Characterization of the transport properties of cloned rat multidrug resistance-associated protein 3 (MRP3). J. Biol. Chem. 274:15181–15185 (1999).Google Scholar
  25. 25.
    P. J. Meier, U. Eckhardt, A. Schroeder, B. Hagenbuch, and B. Stieger. Substrate specificity of sinusoidal bile acid and organic anion uptake systems in rat and human liver. Hepatology 26:1667–1677 (1997).Google Scholar
  26. 26.
    S. H. Cha, T. Sekine, H. Kusuhara, E. Yu, J. Y. Kim, D. K. Kim, Y. Sugiyama, Y. Kanai, and H. Endou. Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. J. Biol. Chem. 275:4507–4512 (2000).Google Scholar
  27. 27.
    G. A. Kullak-Ublick, M. G. Ismair, S B. tieger, L. Landmann, R. Huber, F. Pizzagalli, K. Fattinger, P. J. Meier, and B. Hagenbuch. Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology 120:525–533 (2001).Google Scholar
  28. 28.
    M. Kakyo, H. Sakagami, T. Nishio, D. Nakai, R. Nakagomi, T. Tokui, T. Naitoh, S. Matsuno, T. Abe, and H. Yawo. Immunohistochemical distribution and functional characterization of an organic anion transporting polypeptide 2 (oatp2). FEBS Lett. 445:343–346 (1999).Google Scholar
  29. 29.
    H. C. Walters, A. L. Craddock, H. Fusegawa, M. C. Willingham, and P. A. Dawson. Expression, transport properties, and chromosomal location of organic anion transporter subtype 3. Am. J. Physiol. 279:G1188-G1200 (2000).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Ikumi Tamai
    • 1
    • 2
  • Takashi Nozawa
    • 1
  • Minako Koshida
    • 1
  • Jun-ichi Nezu
    • 3
  • Yoshimichi Sai
    • 1
  • Akira Tsuji
    • 1
    • 2
  1. 1.Faculty of Pharmaceutical SciencesKanazawa UniversityKanazawaJapan
  2. 2.CREST, Japan Science and Technology CorporationKawaguchiJapan
  3. 3.Chugai Research Institute for Molecular Medicine Inc.IbarakiJapan

Personalised recommendations