Antonie van Leeuwenhoek

, Volume 80, Issue 3–4, pp 275–286 | Cite as

Molecular taxonomy and biodiversity of rock fungal communities in an urban environment (Vienna, Austria)

  • Katja Sterflinger
  • Hansjörg Prillinger


The diversity of fungal communities on three different historical monuments in the city of Vienna (Austria) was analyzed and compared to the fungal diversity of microfungi on rock in the original quarry located in a rural area (Zogelsdorf, Austria). The fungal strains isolated were characterized by morphology and the complete rock fungal community was identified based on molecular data, that is, by sequencing parts of the small ribosomal subunit (18S) and internal transcribed spacer region 1 (ITS1). The genera Coniothyrium, Epicoccum and Phoma were found to be dominant {on} monument and rock surfaces. Additionally, black yeasts such as Exophiala species and microcolonial fungi like Sarcinomyces and Coniosporium which hitherto were regarded as typical rock inhabitants in semi-arid environments are frequently found on all rock surfaces in Vienna. The biodiversity of the fungi in the urban environment was much higher than on the same rock type in a rural environment, this difference can be attributed to the elevated organic pollution in the city.

rock-inhabiting fungi ITS1 18S molecular taxonomy historical monuments restoration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anagnostidis K, Gehrmann CK, Groß M, Krumbein WE, Lisi S, Pantazidou, Urzì C & Zagari M (1992) Biodeterioration of marbles, of the Parthenon and Propylaea, Acropolis, Athens-Associated organisms, decay, structures and treatment suggestions. In: Decrouez D, Chamay J & Zezza F (Eds), The conservation of monuments in the Mediterranean Basin, Proc 2nd Int Sym, Musée d'Atr et d'Histoire Naturelle, Geneva: 305-325Google Scholar
  2. Arenal F, Platas G, Monte E & Peláez F (2000) ITS sequencing support for Epicoccum nigrum and Phoma epicoccina being the same biological species. Mycol. Res. 104: 301-303Google Scholar
  3. Bång U (1991) Effect of soil water tension and harvest time on levels of infestation by Phoma foveata Foister in soil and on tubers and stems of potato (Solanum tuberosum L.) Potato Res. 34: 429-441Google Scholar
  4. Braams J (1992) Ecological studies of the fungal microflora inhabiting historical sandstone monuments. PhD thesis, Oldenburg, 104 pGoogle Scholar
  5. de Hoog GS & Guarro J (Eds) (1995) Atlas of Clinical Fungi. Centraalbureau voor Schimmelcultures, 720 ppGoogle Scholar
  6. De Leo F, Urzí C & de Hoog GS (1999) Two Coniosporium species from rock surfaces. Studies Mycol. 43: 70-79Google Scholar
  7. Diakumaku E, Gorbushina AA, Krumbein WE, Panina L & Soukharjevski S (1995) Black fungi in marble and limestones-an aesthetical, chemical and physical problem for the conservation of monuments. Sci. Tot. Environ. 167: 295-304Google Scholar
  8. Domsch KH, Gams W & Anderson TH (1993) Compendium of soil fungi. Reprint, IHW Verlag, Volume I, 860 ppGoogle Scholar
  9. Dornieden T, Gorbushina AA & Krumbein WE (1997) Änderungen der physikalischen Eigenschaften von Marmor durch Pilzbewuchs. Int. Z. Bauinstandsetzen 3: 441-454Google Scholar
  10. Felsenstein J (1985) Confidence limits on phylogenies:an approach using the bootstrap. Evolution 39: 783-791Google Scholar
  11. Gravesen S, Frisvad JC & Samson RA (1994) Micro-fungi. Damaging effects on building materials. Munksgaard, Copenhagen: 20 pGoogle Scholar
  12. Haase G, Sonntag L, Melzer-Krick B & de Hoog GS (1999) Phylogenetic inference by SSU-gene analysis of members of the Herpotrichiellaceae with special reference to human pathogenic species. Studies Mycol. 43: 80-97Google Scholar
  13. Jukes TH & Cantor CR (1969) Evolution of protein molecules. In: Munro HN (Ed) Mammalian protein metabolism, Academic Press, New York: 21-132Google Scholar
  14. Krumbein WE (1969) Ñber den Einfluß der Gesteinsverwitterung auf die exogene Dynamik (Verwitterung und Krustenbildung). Geologische Rundschau 58: 333-363Google Scholar
  15. Krumbein WE & Gorbushina AA (1995) On the interaction of water repellent treatments of building surfaces with organic pollution, micro oragnisms and microbial communities. In: Wittmann F, Siemes T & Verhoef L (Eds), Surface Treatment of Building Materials with Water Repellent Agents, Delft.Google Scholar
  16. Saitou N & Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425Google Scholar
  17. Schweigkofler W & Prillinger H (1997) Analysis of endophytic and latent pathogenic fungi isolated from wooden parts of the grapevine Vitis vinifera in Austria and the South Tyrol. Mitteilungen Klosterneuburg 47: 149-158Google Scholar
  18. Sterflinger K (1999) Patination of marble at ‘Euromarble’ exposure sites-iron stain versus biopigments. Proceedings of the 9th Eurocare Euromarble workshop EU 496, 08-09 October 1998 in Munich, Forschungsbericht 17/1999, Bayerisches Landesamt für Denkmalpflege: 83-91Google Scholar
  19. Sterflinger K (2000) Fungi as geologic agents. Geomicrobiol. J. 17: 97-124Google Scholar
  20. Sterflinger, K & Krumbein WE (1995) Multiple stress factors affecting growth of rock inhabiting fungi. Bot. Acta 108: 490-496Google Scholar
  21. Sterflinger K & Krumbein WE (1997) Dematiacous fungi as a major agent of biopitting for Mediterranean marbles and limestones. Geomicrobiol. J. 14: 219-230Google Scholar
  22. Sterflinger K, Krumbein WE, Lellau T & Rullkötter J (1998) Two cases of biogenic patina formation on rock. Ancient Biomolecules 3: 51-65Google Scholar
  23. Sterflinger K, de Hoog GS & Haase G (1999) Phylogeny and ecology of meristematic ascomycetes. Studies Mycol. 43: 5-22Google Scholar
  24. Sutton BC (1964) Phoma and related genera. Trans. Br. Mycol. Soc. 47: 497-509Google Scholar
  25. Sutton BC (1971) The coelomycetes 4. The genus Harnessia and similar fungi on eucalyptus. Mycol. Pap. 123: 46 ppGoogle Scholar
  26. Torre de la MA, Gomez-Alarcon G, Vincaino C & Garcia T (1993) Biochemical mechanisms of stone alteration carried out by filamentous fungi living in monuments. Biogeochemistry 19: 129-147Google Scholar
  27. Turian G (1975) Coniosporium, une moisissure dématiée demilichénisante et maxi-tolerant à la pollution atmospherique. Soc. Phys. Nat. Genève 10: 176-181Google Scholar
  28. Turian G (1977) Coniosporium aeroalgicolum sp. nov., moisisure dematiée semi-lichenisante. Ber. Schweiz Bot. Ges. 87: 19-24Google Scholar
  29. Urzì C & Krumbein WE (1994) Microbiological impacts on the cultural heritage. in: Krumbein WE, Brimblecombe P, Cosgrove DE & Staniforth S (Eds), Report of the Dahlem Workshop on Durability and Change: The Science, Responsibility, and Cost of Sustaining Cultural Heritage. Chichester: Wiley, 307 pGoogle Scholar
  30. Van de Peer Y & De Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput. Appl. Biosci.10: 569-570Google Scholar
  31. Wollenzien U, Hoog GS de, Krumbein WE & Urzí C (1995) On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Sci. Tot. Environ. 167: 287-294Google Scholar
  32. Wollenzien U, Hoog GS de, Krumbein WE & Uijthof JMJ (1996) Sarcinomyces petricola, a new microcolonial fungus from marble in the Mediterranean basin. Antonie van Leeuwenhoek 71: 281-288Google Scholar
  33. Yourlova NA, Mokrousov IV & de Hoog GS (1995) Intraspecific variability and exopolysaccharide production in Aureobasidium pullulans. Antonie van Leeuwenhoek 68: 57-63Google Scholar
  34. Zalar P, de Hoog GS & Gunde-Cimerman N (1999) Ecology of halotolerant dothideaceous black yeasts. Studies Mycol. 43: 38-48Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  1. 1.Institute of Applied MicrobiologyUniversität für BodenkulturViennaAustria
  2. 2.GeomicrobiologyCarl von Ossietzky-UniversityOldenburgGermany

Personalised recommendations