Climatic Change

, Volume 52, Issue 1–2, pp 29–64 | Cite as

Effects of Land Cover Conversion on Surface Climate

  • L. Bounoua
  • R. DeFries
  • G. J. Collatz
  • P. Sellers
  • H. Khan


This study investigates the effects of large-scale human modification of land cover on regional and global climate. A general circulation model (Colorado State University GCM) coupled to a biophysically-based land surface model (SiB2) was used to run two 15-yr climate simulations. The control run used current vegetation distribution as observed by satellite for the year 1987 to derive the vegetation's physiological and morphological properties. The twin simulation used a realistic approximation of vegetation type distribution that would exist in the absence of human disturbance.In temperate latitudes, where anthropogenic modification of the landscape has converted large areas of forest and grassland to cropland, conversion cools canopy temperatures up to 0.7 ° C in summer and 1.1 ° C in winter. This cooling results from both (1) morphological changes in vegetation which increase albedo and (2) physiological changes in vegetation which increase latent heat flux of crops compared with undisturbed vegetation during the growing season. In the tropics and subtropics, conversion warms canopy temperature by about 0.8 ° C year round. The warming results from a combination of morphological changes in vegetation offset by physiological changes that reduce latent heat flux of existing compared with undisturbed vegetation. If water efficient, tropical C4 grasses replace C3 vegetation, latent heat flux is further reduced.The overall effect of land cover conversion is cooling in temperate latitudes and warming in the tropics. Because the effects are opposite in sign in tropics and middle latitudes, they cancel each other when averaged globally. Over land, the surface temperature increased by 0.2 C in winter and remained essentially unchanged in summer. The effects on land surface hydrology were also small when averaged globally. The results suggest that the effects of land use change of the observed magnitude do not have a strong impact on the globally averaged climate but their signature at regional scales is significant and vary according to the type of land cover conversion.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arakawa, A. and Lamb, V. R.: 1977, ‘Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model’, in Methods in Computational Physics, Academic Press, pp. 173–265.Google Scholar
  2. Arakawa, A. and Lamb, V. R.: 1981, ‘A Potential Enstrophy and Energy Conserving Scheme for the Shallow Water Equations’, Mon. Wea. Rev. 109, 18–36.Google Scholar
  3. Bonan, G.: 1997, ‘Effects of Land Use on the Climate of the United States’, Clim. Change 37, 449–486.Google Scholar
  4. Bonan, G. B.: 1999, ‘Frost Followed the Plow: Impacts of Deforestation on the Climate of the United States’, Ecol. Appl. 9, 1305–1315.Google Scholar
  5. Bonan, G. B., Pollard, D., and Thompson, S. L.: 1992, ‘Effects of Boreal Forest Vegetation on Global Climate’, Nature 359, 716–717.Google Scholar
  6. Bounoua, L., Collatz, G. J., and Randall, D.: 2000, ‘Sensitivity of Climate to Changes in NDVI’, J. Climate 13, 2277.Google Scholar
  7. Bounoua, L., Collatz, C. J., Sellers, P. J., Randall, D. A., Dazlich, D. A., Los, S. O., Berry, J. A., Fung, I., Tucker, C. J., Field, C. B., and Jensen, T. G.: 1999, ‘Interactions between Vegetation and Climate: Radiative and Physiological Effects of Doubled Atmospheric CO2’, J. Climate 12, 309–323.Google Scholar
  8. Bounoua, L. and Krishnamurti, T. N.: 1993a, ‘Influence of Soil Moisture on Sahelian Climate Prediction I’, Meteorol. Atmos. Phys. 52, 183–203.Google Scholar
  9. Bounoua, L. and Krishnamurti, T. N.: 1993b, ‘Influence of Soil Moisture on Sahelian Climate Prediction II’, Meteorol. Atmos. Phys. 52, 205–224.Google Scholar
  10. Brovkin, V., Ganopolski, A., Claussen, M., Kubatzki, C., and Petoukhov, V.: 1999, ‘Modelling Climate Response to Historical Land Cover Change'.Google Scholar
  11. Carson, D. J. and Sangster, A. J.: 1981, ‘The Influence of Land-Surface Albedo and Soil Moisture on General Circulation Model Simulation’, in Rutherford, I. D. (ed.), Research Activities in Atmospheric and Oceanic Modeling. Numerical Experimentation Program Report No. 2, pp. 5.14–5.21.Google Scholar
  12. Charney, J. G.: 1975, ‘Dynamics of Deserts and Drought in the Sahara’, Quart. J. Roy. Meteorol. Soc. 101, 193–202.Google Scholar
  13. Charney, J. G., Quirk, W. J., Chow, S. H., and Kornfield, J.: 1977, ‘A Comparative Study of the Effects of Albedo Change on Drought in Semi-Arid Regions’, J. Atmos. Sci. 34, 1366–1385.Google Scholar
  14. Chase, T.: 1995, The Sensitivity of a General Circulation Model to Large Scale Vegetation Changes, Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado.Google Scholar
  15. Chase, T. N., Pielke, R. A., Kittel, T. G. F., Baron, J. S., and Stohlgern, T. J.: 1999, ‘Potential Impacts on Colorado Rocky Mountain Weather Due to Land Use Changes on the Adjacent Great Plains’, J. Geophys. Res. 104, 16,673–16,690.Google Scholar
  16. Chase, T. N., Pielke, R. A., Kittel, T. G. F., Nemani, R., and Running, S.: 1996, ‘Sensitivity of a General Circulation Model to Global Changes in Leaf Area Index’, J. Geophys. Res. 101, 7393–7408.Google Scholar
  17. Chase, T. N., Pielke, R. A. S., Kittel, T. G. F., Nemani, R. R., and Running, S. W.: 2000, ‘Simulated Impacts of Historical Land Cover Changes on Global Climate in Northern Winter’, Clim. Dyn. 16, 93–105.Google Scholar
  18. Chervin, R. M.: 1979, Response of the NCAR General Circulation Model to Changed Land Surface Albedo, Report of the JOC Study Convergence on Climate Models: Performance, Intercomparison and Sensitivity Studies.Google Scholar
  19. Ciais, P., Tans, P. P., Trolier, M., White, J. W. C., and Francey, R. J.: 1995a, ‘A Large Northern Hemisphere Terrestrial CO2 Sink Indicated by 13C/12C of Atmospheric CO2, Science 269, 1098–1102.Google Scholar
  20. Ciais, P., Tans, P. P., White, J.W. C., Troiler, M., Francey, R. J., Berry, J. A., Randall, D. R., Sellers, P. J., Collatz, J. G., and Schimel, D. S.: 1995b, ‘Partitioning of Ocean and Land Uptake of CO2 as Inferred by Delta-C13 Measurements from the NOAA Climate Monitoring and Diagnostics Laboratory Global Air Samplimg Network’, J. Geophys. Res.-Atmos., 100.Google Scholar
  21. Collatz, G. J., Berry, J. A., and Clark, J. S.: 1998, ‘Effects of Climate and Atmospheric CO2 Partial Pressure on the Global Distribution of C4 Grasses: Present, Past and Future’, Oecologia 114, 441–454.Google Scholar
  22. Collatz, G. J., Ribas-Carbo, M., and Berry, J. A.: 1992, ‘Coupled Photosynthesis-Stomatal Conductance Models for Leaves of C4 Plants’, Aust. J. Plant Physiol. 19, 519–538.Google Scholar
  23. Costa, M. H. and Foley, J. A.: 2000, ‘Combined Effects of Deforestation and Doubled Atmospheric CO2 Concentration on the Climate of Amazonia’, J. Clim. 13, 18–34.Google Scholar
  24. Cowan, I. R. and Farquhar, G. D.: 1977, ‘Stomatal Function in Relation to Leaf Metabolism and Environment’, Symp. Soc. Exp. Biol. 31, 471–505.Google Scholar
  25. Deardorff, J. W.: 1972, ‘Parameterization of the Planetary Boundary Layer for Use in General Circulation Models’, Mon. Wea. Rev. 100, 83–106.Google Scholar
  26. DeFries, R., Field, C., Fung, I., Collatz, G., and Bounoua, L.: 1999, ‘Combining Satellite Data and Biogeochemical Models to Estimate Global Effects of Human-Induced Land Cover Change on Carbon Emissions and Primary Productivity’, Global Biogeochem. Cycles 13, 803–815.Google Scholar
  27. DeFries, R. S. and Townshend, J. R. G.: 1994, ‘NDVI-Derived Land Cover Classification at Global Scales’, Int. J. Remote Sens. 15, 3567–3586.Google Scholar
  28. DeFries, R. S. and Townshend, J. R. G.: 1995, ‘An Initial Coarse Resolution NDVI-Derived Global Land Cover Classification’, in Meeson, B. W., Corprew, F. E., McManus, J. M. P., Myers, D. W., Closs, J. W., Sun, K.-J., Sunday, D. J., and Sellers, P. J. (eds.): ISLSCP Initiative I – Global Data Sets for Land-Atmosphere Models, 1987–1988. Volumes 1–5, Published on CD by NASA (USA_NASA_GDAAC_ISLSCP_001-USA_NASA_GDAAC_ISLSCP_005).Google Scholar
  29. Denning, A. S., Collatz, G. J., Zhang, C., Randall, D. A., Berry, J. A., Sellers, P. J., Colello, G. D., and Dazlich, D. A.: 1996a, ‘Simulations of Terrestrial Carbon Metabolism and Atmospheric CO2 in a General Circulation Model. Part 1: Surface Carbon Fluxes’, Tellus 48B, 521–542.Google Scholar
  30. Denning, A. S., Randall, D. A., Collatz, G. J., and Sellers, P. J.: 1996b, ‘Simulations of Terrestrial Carbon Metabolism and Atmospheric CO2 in a General Circulation Model. Part II: Simulated CO2 Concentrations’, Tellus 48B, 543–567.Google Scholar
  31. Dorman, J. L. and Sellers, P. J.: 1989, ‘A Global Climatology of Albedo, Roughness Length, and Stomatal Resistance for Atmospheric General Circulation Models as Represented by the Simple Biosphere Model (SiB)’, J. Appl. Meteorol. 28, 833–855.Google Scholar
  32. Fowler, L. D. and Randall, D. A.: 1996, ‘Liquid and Ice Cloud Microphysics in the CSU General Circulation Model. Part 2: Impact on Cloudiness, the Earth's Radiation Budget, and the General Circulation of the Atmosphere’, J. Climate 9, 530–560.Google Scholar
  33. Fowler, L. D., Randall, D. A., and Rutledge, S. A.: 1996, ‘Liquid and Ice Cloud Microphysics in the CSU General Circulation Model. Part 1. Model Description and Simulated Microphysical Processes’, J. Climate 9, 489–529.Google Scholar
  34. Fung, I., Field, C. B., Berry, J. A., Thompson, M. V., Randerson, J. T., Malmstrom, C. M., Vitousek, P. M., Collatz, G. J., Sellers, P. J., Randall, D. A., Denning, A. S., Badeck, F., and John, J.: 1997, ‘Carbon 13 Exchanges between the Atmosphere and Biosphere’, Global Biogeochem. Cycles 11, 507–533.Google Scholar
  35. Hansen, J., Fung, I., Lacis, A., Rind, D., Lebedeff, S., Ruedy, R., and Russell, G.: 1988, ‘Global Climate Changes as Forecast by Goddard Institute for Space Studies Three-Dimensional Model’, J. Geophys. Res. 93, 9341–9364.Google Scholar
  36. Hansen, J., Lacis, A., Rind, D., Russell, G., Stone, P., Fung, I., Ruedy, R., and Lerner, J.: 1984, ‘Climate Sensitivity: Analysis of Feedback Mechanisms in Climate Processes and Climate Sensitivity’, Geophys. Monograph 29, 130–163.Google Scholar
  37. Harshvardhan, R., Randall, D. A., and Corsetti, T. G.: 1987, ‘A Fast Radiation Parameterization for General Circulation Models’, J. Geophys. Res. 92, 1009–1016.Google Scholar
  38. Henderson-Sellers, A., Dickinson, R., Durbridge, T., Kennedy, P., McGuffie, K., and Pitman, A.: 1993, ‘Tropical Deforestation: Modeling Local to Regional Scale Climate Change’, J. Geophys. Res. 98, 7289–7315.Google Scholar
  39. Houghton, R. A.: 1999, ‘The Annual Net Flux of Carbon to the Atmosphere from Changes in Land Use 1850–1990’, Tellus Ser. B 51B, 298–313.Google Scholar
  40. Jensen, T. G., Dazlich, D. A., and Randall, D. A.: 1995, A One-Dimensional Mixed Layer Ocean and Sea Ice Model with Prescribed Oceanic Heat Transport, Dept. of Atmospheric Science, Colorado State University, Fort Collins, CO, p. 48.Google Scholar
  41. Keller, M. D., Jacob, D. J., Wofsy, S. C., and Harriss, R. C.: 1991, ‘Effects of Tropical Deforestation on Global and Regional Atmospheric Chemistry’, Clim. Change 19, 139–158.Google Scholar
  42. Kleidon, A., Fraedrich, K., and Heimann, M.: 2000, ‘A Green Planet versus a Desert World: Estimating the Maximum Effect of Vegetation on the Land Surface Climate’, Clim. Change 44, 471–493.Google Scholar
  43. Laval, K. and Picon, L.: 1986, ‘Effect of Change of Surface Albedo on the Sahel Climate’, J. Atmos. Sci. 43, 2418–2429.Google Scholar
  44. Lean, J. and Warrilow, D. A.: 1989, ‘Simulation of the Regional Climatic Impact of Amazon Deforestation’, Nature 342, 411–413.Google Scholar
  45. Los, S. O., Justice, C. O., and Tucker, C. J.: 1994, ‘A Global 1×1 Degree NDVI Data Set for Climate Studies Derived from the GIMMS Continental NDVI Data’, Int. J. Remote Sens. 15, 3493–3518.Google Scholar
  46. Manabe, S.: 1975, A Study of the Interaction between the Hydrological Cycle and Climate Using a Mathematical Model of the Atmosphere, Report on Meeting on Weather-Food Interactions, Massachusetts Institute of Technology.Google Scholar
  47. Matthews, E.: 1983, ‘Global Vegetation and Land Use: New High Resolution Data Bases for Climate Studies’, J. Clim. Appl. Meteorol. 22, 474–487.Google Scholar
  48. McGuffie, K., Henderson-Sellers, A., Zhang, H., Durbridge, T. B., and Pitman, A. J.: 1995, ‘Global Climate Sensitivity to Tropical Deforestation’, Global Plan. Change 10, 97–128.Google Scholar
  49. Nobre, C. A., Sellers, P. J., and Shukla, J.: 1991, ‘Amazonian Deforestation and Regional Climate Change’, J. Climate 4, 957–987.Google Scholar
  50. Pan, Z., Takle, E. S. M., and Arritt, R.: 1999, ‘Simulation of Potential Impacts of Man-Made Land Use Changes on U.S. Summer Climate under Various Synoptic Regimes’, J. Geophys. Res. 104, 6515–6528.Google Scholar
  51. Pielke, R. A., Avissar, R., Raupach, M., Dolman, A. J., Zeng, X., and Denning, A. S.: 1998, ‘Interactions between the Atmosphere and Terrestrial Ecosystems: Influence on Weather and Climate’, Global Change Biol. 4, 461–475.Google Scholar
  52. Pitman, A. J. and Zhao, M.: 2000, ‘The Relative Impact of Observed Change in Land Cover and Carbon Dioxide as Simulated by a Climate Model’, Geophys. Res. Lett. 27, 1267–1270.Google Scholar
  53. Randall, D. A., Dazlich, D. A., Zhang, C., Denning, A. S., Sellers, P. J., Tucker, C. J., Bounoua, L., Berry, J. A., Collatz, G. J., Field, C. B., Los, S. O., Justice, C. O., and Fung, I.: 1996, ‘A Revised Land Surface Parameterization (SiB2) for GCMs. Part 3. The Greening of the Colorado State University General Circulation Model’, J. Climate 9, 738–763.Google Scholar
  54. Randall, D. A. and Pan, D. M.: 1993, ‘Implementation of the Arakawa–Schubert Cumulus Parameterization with a Prognostic Closure’, in Representation of Cumulus Convection in Numerical Models of the Atmosphere, Meterological Monograph, American Meteorological Society, pp. 137–144.Google Scholar
  55. Schimel, D. S.: 1998, ‘Climate Change: The Carbon Equation’, Nature 393, 208–210.Google Scholar
  56. Sellers, P. J.: 1985, ‘Canopy Reflectance, Photosynthesis and Transpiration’, Int. J. Remote Sens. 6, 1335–1372.Google Scholar
  57. Sellers, P. J.: 1987, ‘Canopy Reflectance, Photosynthesis and Transpiration. II. The Role of Biophysics in the Linearity of their Interdependence’, Remote Sens. Environ. 21, 143–216.Google Scholar
  58. Sellers, P. J., Berry, J. A., Collatz, G. J., Field, C. B., and Hall, F. G.: 1992, ‘Canopy Reflectance, Photosynthesis and Transpiration. III. A Re Analysis Using Improved Leaf Models and a New Canopy Integration Scheme’, Remote Sens. Environ. 42, 187–216.Google Scholar
  59. Sellers, P. J., Bounoua, L., and Jensen, T. G. et al.: 1996a, ‘Comparison of Radiative and Physiological Effects of Doubled Atmospheric CO2 on Climate’, Science 271, 1402.Google Scholar
  60. Sellers, P. J., Los, S. O., Tucker, C. J., Justice, C. O., Dazlich, D., Collatz, C. J., and Randall, D. A.: 1996b, ‘A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMs. Part II: The Generation of Global Fields of Terrestrial Biophysical Parameters from Satellite Data, J. Climate 9, 706–737.Google Scholar
  61. Sellers, P. J., Randall, D. A., Collatz, G. J., Berry, J. A., Field, C. B., Dazlich, D. A., Zhang, C., and Bounoua, L.: 1996c, ‘A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMs. Part 1: Model Formulation’, J. Climate 9, 676–705.Google Scholar
  62. Shukla, J. and Mintz, Y.: 1982, ‘Influence of Land Surface Evapotranspiration on the Earth's Climate’, Science 125, 1498–1501.Google Scholar
  63. Shukla, J., Nobre, C., and Sellers, P.: 1990, ‘Amazon Deforestation and Climate Change’, Science 247, 1322–1325.Google Scholar
  64. Suarez, M. J., Arakawa, A., and Randall, D. A.: 1983, ‘Parameterization of the Planetary Boundary Layer in the UCLA General Circulation Model: Formulation and Results’, Mon. Wea. Rev. 111, 2224–2243.Google Scholar
  65. Sud, J. C. and Smith, W. E.: 1984, ‘Ensemble Formulation of Surface Fluxes and Improvement in Evapotranspiration and Cloud Parameterization in a GCM’, Boundary-Layer Meteorol. 29, 185–210.Google Scholar
  66. Sud, Y. C. and Fennessy, M. J.: 1982, ‘A Study of the Influence of Surface Albedo on July Circulation in Semi Arid Regions Using the GIAS GCM’, J. Climatol. 2, 105–125.Google Scholar
  67. Sud, Y. C., Walker, G. K., K. J.-H., Liston, G. E., Sellers, P. J., and Lau, W. K.-M.: 1996, ‘Biogeophysical Consequences of a Tropical Deforestation Scenario: A GCM Simulation Study’, J. Climate 9, 3225–3247.Google Scholar
  68. Walker, J. and Rowntree, P. R.: 1977, ‘The Effect of Soil Moisture on Circulation and Rainfall in a Tropical Model’, Quart. J. Roy. Meteorol. Soc. 103, 29–46.Google Scholar
  69. Xue, Y., Fennessy, M. J., and Sellers, P. J.: 1996, ‘Impact of Vegetation Properties on U.S. Summer Weather Prediction’, J. Geophys. Res. 101, 7419–7430.Google Scholar
  70. Xue, Y. and Shukla, J.: 1991, ‘The Influence of Land Properties on Sahel Climate Part 1: Desertification’, J. Climate 6, 2232–2245.Google Scholar
  71. Yeh, T. C., Wetherland, R. T., and Manabe, S.: 1984, ‘The Effect of Soil Moisture on the Short-Term Climate and Hydrology Change – A Numerical Experiment’, Mon. Wea. Rev. 112, 474–490.Google Scholar
  72. Zeng, N., Neelin, J. D., Lau, K.-M., and Tucker, C. J.: 1999, ‘Enhancement of Interdecadal Climate Variability in the Sahel by Vegetation Interaction’, Science 286, 1537–1540.Google Scholar
  73. Zhang, H., Henderson-Sellers, A., and McGuffie, K.: 1996, ‘Impacts of Tropical Deforestation. Part 1: Process Analysis of Local Climatic Change’, J. Climate 9, 1497–1517.Google Scholar
  74. Zheng, X. and Eltahir, E. A. B.: 1998, ‘The Role of Vegetation in the Dynamics of West African Monsoons’, J. Climate 11, 2078–2096. (Received 18 January 2000; in revised form 22 March 2001)Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • L. Bounoua
    • 1
    • 2
    • 3
  • R. DeFries
    • 2
    • 4
  • G. J. Collatz
    • 3
  • P. Sellers
    • 5
  • H. Khan
    • 4
  1. 1.Department of MeteorologyUniversity of MarylandCollege ParkU.S.A.
  2. 2.Earth Systems Science Interdisciplinary CenterUniversity of MarylandCollege ParkU.S.A.
  3. 3.NASA/GSFCBiospheric Sciences BranchGreenbeltU.S.A
  4. 4.Department of GeographyUniversity of MarylandCollege ParkU.S.A
  5. 5.NASA/JSCHoustonU.S.A

Personalised recommendations