Advertisement

Journal of Insect Behavior

, Volume 14, Issue 6, pp 799–827 | Cite as

Geographic Variation in Reliance on Trial-and-Error Signal Derivation by Portia labiata, an Araneophagic Jumping Spider from the Philippines

  • Robert R. Jackson
  • Chris M. Carter
Article

Abstract

Signal-generation behavior of Portia labiata, a web-invading araneophagic jumping spider (Salticidae), was investigated in the laboratory. Individuals derived from two habitats in the Philippines were compared: Los Baños, a low-elevation tropical rainforest site where prey (spider) diversity is especially high, and Sagada, a high-elevation pine-forest site where prey (spider) diversity is less. Maternal effects and variation in experience were minimized because all individuals tested were from laboratory rearing to second and third generation under standardized conditions. Individuals from both populations used a trial-and-error (generate-and-test) algorithm to derive appropriate aggressive-mimicry signals. However, in laboratory experiments, the Los Baños P. labiata relied on trial and error significantly more often than did the Sagada P. labiata. Selection pressures that may have been responsible for evolution of different levels of flexibility are considered, including the different arrays of prey to which the Los Baños and the Sagada P. labiata are exposed.

spiders Salticidae aggressive mimicry predation cognition ecotypes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Alloway, T. M. (1972). Learning and memory in insects. Annu. Rev. Entomol. 17: 43-56.Google Scholar
  2. Bays, S. M. (1962). A study on the training possibilities of Araneus diadematus Cl. Experientia 18: 423-425.Google Scholar
  3. Beer, C. G. (1996). Trial and error in the evolution of cognition. Behav. Proc. 35: 215-224.Google Scholar
  4. Bernays, E. A. (1988). The value of being a resource specialist: Behavioral support for a neural hypothesis. Am. Nat. 151: 451-464.Google Scholar
  5. Bitterman, M. E. (1965). Phyletic differences in learning. Am. Psychol. 20: 396-410.Google Scholar
  6. Bitterman, M. E. (1986). Vertebrate-invertebrate comparisons. In Jerison, H. J., and Jerison, I. (eds.), Intelligence and Evolutionary Biology, NATO Advanced Study Institute on Evolutionary Biology of Intelligence (Popi, Italy), Springer-Verlag, Berlin, pp. 251-276.Google Scholar
  7. Blest, A. D., O'Carroll, D. C., and Carter, M. (1990). Comparative ultrastructure of Layer I receptor mosaics in principal eyes of jumping spiders: The evolution of regular arrays of light guides. Cell Tissue Res. 262: 445-460.Google Scholar
  8. Brodie, E.D., III, and Brodie, E.D., Jr. (1999). Predator-prey arms races. BioScience 49: 557-568.Google Scholar
  9. Carducci, J. P., and Jakob, E. M. (2000). Rearing environment affects behaviour of jumping spiders. Anim. Behav. 59: 39-46.Google Scholar
  10. Clutton-Brock, T. M., and Harvey, P. H. (1980). Primates, brains, and ecology. J. Zool. Lond. 190: 309-323.Google Scholar
  11. Coddington, J. A., and Levi, H. W. (1991). Systematics and evolution of spiders (Araneae). Annu. Rev. Ecol. Syst. 22: 565-592.Google Scholar
  12. Davies, N. B., Brooke, M. L., and Kacelnik, A. (1996). Recognition errors and probability of parasitism determine whether reed warblers should accept or reject mimetic cuckoo eggs. Proc. Roy. Soc. Lond. B263: 925-931.Google Scholar
  13. Davis, R. T., and Dougan, J. D. (1988). The phylogeny of information processing. In Bolles, R. C., and Beecher, M. D. (eds.), Evolution and Learning, Lawrence Erlbaum, Hillsdale, NJ, pp. 135-155.Google Scholar
  14. Dukas, R. (1998a). Introduction. In Dukas, R. (ed.), Cognitive Ecology: The Evolutionary Ecology of Information Processing and Decision Making, University of Chicago Press, Chicago and London.Google Scholar
  15. Dukas, R. (1998b). Evolutionary ecology of learning. In Dukas, R. (ed.), Cognitive Ecology: The Evolutionary Ecology of Information Processing and Decision Making, University of Chicago Press, Chicago.Google Scholar
  16. Dukas, R. (1999). Costs of memory: Ideas and predictions. J. Theoret. Biol. 197: 41-50.Google Scholar
  17. Edwards, G. B., and Jackson, R. R. (1994). The role of experience in the development of predatory behaviour in Phidippus regius, a jumping spider (Araneae, Salticidae) from Florida. N.Z. J. Zool. 21: 269-277.Google Scholar
  18. Eisenberg, J.F., and Wilson, D. E. (1978). Relative brain size and feeding strategies in Chiroptera. Evolution 32: 740-751.Google Scholar
  19. Endler, J. A. (1977). Geographic Variation, Speciation, and Clines, Princeton University Press, Princeton, NJ.Google Scholar
  20. Foelix, R. F. (1996). Biology of Spiders, 2nd ed., Oxford University Press and Georg Thieme Verlag, Oxford.Google Scholar
  21. Grunbaum, A. A. (1927). Uber das Verhalten der Spinne Epeira diademata, besonders gegenuber vibratorischen Reizen. Psychol. Forsch. 9: 275-299.Google Scholar
  22. Harland, D. P., and Jackson, R. R. (2000). 'Eight-legged cats' and how they see-A review of recent research on jumping spiders (Araneae: Salticidae). Cimbebasia 16: 231-240.Google Scholar
  23. Harland, D. P., and Jackson, R. R. (2001). Cues by which Portia fimbriata, an araneophagic jumping spider, distinguishes jumping-spider prey from other prey. J. Exp. Biol. (in press).Google Scholar
  24. Heilig, A. M., and Herberstein, M. E. (1999). The role of experience in web-building spiders (Araneidae). Anim. Cogn. 2: 171-177.Google Scholar
  25. Hirsh, R. (1974). The hippocampus and contextual retrieval of information from memory: A theory. Behav. Biol. 12: 421-444.Google Scholar
  26. Homann, H. (1971). Die Augen der Araneen. Z. Morph. Okol. Tiere 69: 201-272.Google Scholar
  27. Huntingford, F. A., and Wright, P. J. (1992). Inherited population differences in avoidanceconditioning in three-spined sticklebacks, Gasterosteus aculeatus. Behaviour 122: 264-273.Google Scholar
  28. Huntingford, F. A., Wright, P. J., and Tierney, J. F. (1994). Adaptive variation in antipredator behaviour in three spine stickleback. In Bell, M. A., and Foster, S.A. (eds.), The Evolutionary Biology of the Three spine Stickleback, Oxford University Press, Oxford, pp. 277-296.Google Scholar
  29. Jackson, R. R. (1985). A web-building jumping spider. Sci. Am. 253: 102-115.Google Scholar
  30. Jackson, R. R. (1986). Web building, predatory versatility, and the evolution of the Salticidae. In Shear, W. A. (ed.), Spiders: Webs, Behavior, and Evolution, Stanford University Press, Stanford, CA, pp. 232-268.Google Scholar
  31. Jackson, R. R. (1992a). Eight-legged tricksters: Spiders that specialize at catching other spiders, BioScience 42: 590-598.Google Scholar
  32. Jackson, R. R. (1992b). Conditional strategies and interpopulation variation in the behaviour of jumping spiders. N.Z. J. Zool. 19: 99-111.Google Scholar
  33. Jackson, R. R., and Blest, A. D. (1982). The biology of Portia fimbriata, a web-building jumping spider (Araneae: Salticidae) from Queensland: Utilization of webs and predatory versatility. J. Zool. Lond 196: 255-293.Google Scholar
  34. Jackson, R. R., and Hallas, S.E.A. (1986a). Capture efficiencies of web-building jumping spiders (Araneae, Salticidae): Is the jack-of-all-trades the master of none? J. Zool. Lond. A209: 1-7.Google Scholar
  35. Jackson, R. R., and Hallas, S. E. A. (1986b). Comparative biology of Portia africana, Portia albimana, Portia fimbriata, Portia labiata, and Portia schultizi, araneophagic, web-building jumping spiders (Araneae: Salticidae): Utilisation of webs, predatory versatility and intraspecific interactions. N.Z. J. Zool. 13: 423-489.Google Scholar
  36. Jackson, R. R., and Pollard, S. D. (1996). Predatory behavior of jumping spiders. Annu. Rev. Entomol. 41: 287-308.Google Scholar
  37. Jackson, R. R., and Wilcox, R. S. (1993). Spider flexibly chooses aggressive mimicry signals for different prey by trial and error. Behaviour 127: 21-36.Google Scholar
  38. Jackson, R. R., and Wilcox, R. S. (1998). Spider-eating spiders. Am. Sci. 86: 350-357.Google Scholar
  39. Jackson, R. R., Li, D., Fijn, N., and Barrion, A. (1998). Predator-prey interactions between aggressive-mimic jumping spiders (Salticidae) and araneophagic spitting spiders (Scytodidae) from the Philippines. J. Insect. Behav. 11(3): 319-342.Google Scholar
  40. Jerison, H. J. (1973). Evolution of the Brain and Intelligence, Academic Press, New York.Google Scholar
  41. Jerison, H. J. (1985). On the evolution of mind. In Oackley, D. A. (ed.), Brain and Mind, Psychology in Progress, Methuen, London, New York, pp. 1-31.Google Scholar
  42. Johnston, T. D. (1982). The selective costs and benefits of learning: An evolutionary analysis. Adv. Stud. Behav. 12: 65-106.Google Scholar
  43. Kamil, A. C. (1988). A synthetic approach to the study of animal intelligence. In Leger, D. W. (ed.), Comparative Perspectives in Modern Psychology, Nebraska Symposium on Motivation, Vol. 35, University of Nebraska Press, Lincoln, pp. 230-257.Google Scholar
  44. Kamil, A. C. (1998). On the proper definition of cognitive ethology. In Pepperberg, I., Kamil, A., and Balda, R. (eds.), Animal Cognition in Nature, Academic Press, New York, pp. 1-28.Google Scholar
  45. Lahue, R. (1973). Chelicerates. In Corning, J. A., Dyal, J. A., and Willows, A. O. D. (eds.), Invertebrate Learning, Vol. 2. Arthropods and Gastropod Molluscs, Plenum, New York, pp. 49-123.Google Scholar
  46. Land, M. F. (1969a). Structure of the retinae of the principal eyes of jumping spiders (Salticidae: Dendryphantinae) in relation to visual optics. J. Exp. Biol. 51: 443-470.Google Scholar
  47. Land, M.F. (1969b). Movements of the retinae of jumping spiders (Salticidae: Dendryphantinae) in response to visual stimuli. J. Exp. Biol. 51: 471-493.Google Scholar
  48. Land, M. F. (1974). A comparison of the visual behavior of a predatory arthropod with that of a mammal. In Wiersma, C. A. G. (ed.), Invertebrate Neurons and Behavior, MIT Press, Cambridge, MA, pp. 411-418.Google Scholar
  49. Land, M. F. (1985). The morphology and optics of spider eyes. In Barth, F.G. (ed.), Neurobiology of Arachnids, Springer-Verlag, Berlin, pp. 53-78.Google Scholar
  50. Lashley, K. S. (1949). Persistent problems in the evolution of mind. Q. Rev. Biol. 24: 28-42.Google Scholar
  51. Laverty, T. M., and Plowright, R. C. (1988). Flower handling by bumblebees: A comparison of specialists and generalists. Anim. Behav. 36: 733-740.Google Scholar
  52. Lefebvre, L., Whittle, P., Lascaris, E., and Finkelstein, A. (1997). Feeding innovations and forebrain size in birds. Anim. Behav. 53: 549-560.Google Scholar
  53. LeGuelte, L. (1969). Learning in spiders. Am. Zool. 9: 145-152.Google Scholar
  54. Li, D., and Jackson, R. R. (1996). Prey preferences of Portia fimbriata, an araneophagic, webbuilding jumping spider (Araneae: Salticidae) from Queensland. J. Insect Behav. 9: 613-642.Google Scholar
  55. Li, D., and Jackson, R. R. (1997). Influence of diet on survivorship and growth in Portia fimbriata, an araneophagic jumping spider (Araneae: Salticidae). Can. J. Zool. 75: 1652-1658.Google Scholar
  56. Li, D., Jackson, R. R., and Barrion, A. (1997). Prey preferences of Portia labiata, P. africana, and P. schultzi, araneophagic jumping spiders (Araneae: Salticidae) from the Philippines, Sri Lanka, Kenya and Uganda. N.Z. J. Zool. 24: 333-349.Google Scholar
  57. Li, D., Jackson, R. R., and Barrion, A. (1999). Parental and predatory behaviour of Scytodes sp., an araneophagic spitting spider (Araneae: Scytodidae) from the Philippines. J. Zool. Lond. 247: 293-310.Google Scholar
  58. Lorenz, K. (1965). Evolution and Modification of Behavior, University of Chicago Press, Chicago.Google Scholar
  59. Mace, G. M., Harvey, P. H., and Clutton-Brock, T. M. (1981). Brain size and ecology in small mammals. Zool. Lond. 193: 333-354.Google Scholar
  60. Masters, W. M., Markl, H. S., and Moffat, A. M. (1986). Transmission of vibrations in a spider's web. In Shear, W. A. (ed.), Spiders: Webs, Behavior, and Evolution, Stanford University Press, Stanford, CA, pp. 49-69.Google Scholar
  61. Mayr, E. (1974). Behavior programs and evolutionary strategies. Am. Sci. 62: 650-659.Google Scholar
  62. McFarland, D., and Bosser, T. (1993). Intelligent Behavior in Animals and Robots, MIT Press, Cambridge, MA.Google Scholar
  63. McPhail, E. M. (1985). Vertebrate Intelligence: The null hypothesis. Proc. Trans.Roy. Soc. Lond. B308: 37-51.Google Scholar
  64. Menzel, R., Bicker, G., Carew, T. J., Fischbach, K. F., Gould, J. L., Heinrich, B., Heisenberg, M. A., Lindauer, M., Markl, H. S., Quinn, W. G., Sahley, C. L., and Wagner, A. R. (1984). Biology of invertebrate learning. In Marler, P., and Terrace, H. S. (eds.), The Biology of Learning, Springer-Verlag, Berling, pp. 249-270.Google Scholar
  65. Mitchell, R.W. (1986). A framework for discussing deception. In Mitchell, R.W., and Thompson, N. S. (eds.), Deception: Perspectives on Human and Nonhuman Deceit, State University of New York Press, Albany, pp. 3-40.Google Scholar
  66. Moore, A. J., Wolf, J. B., and Brodie, E.D., III (1998). The influence of direct and indirect genetic effects on the evolution of behavior: Social and sexual selection meet maternal effects. In Mousseau, T. A., and Fox, C.W. (eds.), Maternal Effects as Adaptations, Oxford University Press, Oxford, pp. 22-41.Google Scholar
  67. Morse, D. H. (1999). Choice of hunting site as a consequence of experience in late-instar crab spiders. Oecologia 120: 252-257.Google Scholar
  68. Morse, D. H. (2000a). The role of experience in determining patch-use by adult crab spiders. Behaviour 137: 265-278.Google Scholar
  69. Morse, D. H. (2000b). Flower choice by naive young crab spiders and the effect of subsequent experience. Anim. Behav. 59: 943-951.Google Scholar
  70. Nakata, K., and Ushimaru, A. (1999). Feeding experience affects web relocation and investment in web threads in an orb-web spider. Cyclosa argenteoalba. Anim. Behav. 57: 1251-1255.Google Scholar
  71. Nelson, D. A., Whaling, C., and Marler, P. (1996). The capacity for song memorization varies in populations of the same species. Anim. Behav. 52: 379-387.Google Scholar
  72. Rensch, B. (1956). Increase in learning capability with increase of brain-size. Am. Nat. 90: 81-95.Google Scholar
  73. Rice, W. R. (1989). Analysing tables of statistical tests. Evolution 43: 223-225.Google Scholar
  74. Richman, D., and Jackson, R. R. (1992). A review of the ethology of jumping spiders (Araneae, Salticidae). Bull. Br. Arachnol. Soc. 9: 33-37.Google Scholar
  75. Riechert, S. E. (1981). The consequences of being territorial: Spiders, a case study. Am. Nat. 117: 871-892.Google Scholar
  76. Riechert, S. E. (1991). Prey abundance versus diet breadth in a spider test system. Evol. Ecol. 5: 327-338.Google Scholar
  77. Riechert, S. E. (1999). The use of behavioral ecotypes in the study of evolutionary processes. In Foster, S. A., and Endler, J. A. (eds.), Geographic Variation in Behavior: Perspectives on Evolutionary Mechanisms, Oxford University Press, Oxford, pp. 3-32.Google Scholar
  78. Roff, D. A. (1998). The detection and measurement of maternal effects. In Mousseau, T. A., and Fox, C. W. (eds.), Maternal Effects as Adaptations, Oxford University Press, Oxford, pp. 83-96.Google Scholar
  79. Sandoval, C. P. (1994). Plasticity in web design in the spider Parawixia bistriata: A response to variable prey type. Funct. Ecol. 8: 701-707.Google Scholar
  80. Schneider, W., and Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search and attention. Psychol. Rev. 84: 1-66.Google Scholar
  81. Sebrier, M. A., and Krafft, B. (1993). Influence of prior experience on prey consumption behaviour in the spider Zygiella x-notata. Ethol. Ecol. Evol. 5: 541-547.Google Scholar
  82. Seyfarth, E. R., Hargenröder, R., Ebbes, R., and Barth, F. (1982). Idiothetic orientation of a wandering spider: Compensation for detours and estimates of goal distances. Behav. Ecol. Sociobiol. 11: 139-148.Google Scholar
  83. Shettleworth, S. J. (1993). Varieties of learning and memory in animals. J. Exp. Psychol. Anim. Behav. Proc. 19: 5-14.Google Scholar
  84. Simon, H. (1969). The Science of the Artificial, MIT Press, Cambridge, MA.Google Scholar
  85. Skinner, B. F. (1938). The Behavior of Organisms, Appleton, New York.Google Scholar
  86. Sokal, R. R., and Rohlf, F. J. (1995). Biometry: The Principles and Practice of Statistics in Biological Research, 3rd ed., W. H. Freeman, New York.Google Scholar
  87. Staddon, J. E. R. (1983). Adaptive Behavior and Learning, Cambridge University Press, Cambridge.Google Scholar
  88. Stephens, D. W. (1991). Change, regularity and value in the evolution of animal learning. Behav. Ecol. 2: 77-89.Google Scholar
  89. Tarsitano, M. S., Jackson, R. R., and Kirchner, W. (2000). Signals and signal choices made by araneophagic jumping spiders while hunting the orb-weaving spiders Zygiella x-notata and Zosis genicularis. Ethology 106: 595-615.Google Scholar
  90. Terrace, H. S. (1985). Animal cognition: Thinking without language. Phil Trans Roy. Soc. Lond. B308: 113-128.Google Scholar
  91. Thomas, R. K. (1996). Investigating cognitive abilities in animals: Unrealized potential. Cognit. Brain Res. 3: 157-166.Google Scholar
  92. Thompson, D. B. (1990). Different spatial scales of adaptation in the climbing behavior of Peromyscus maniculatus: Geographic variation, natural selection, and gene flow. Evolution 44: 952-965.Google Scholar
  93. Thompson, D. B. (1999). Different spatial scales of natural selection and gene flow:The evolution of behavioral geographic variation and phenotypic plasticity. In Foster, S. A., and Endler, J. A. (eds.), Geographic Variation in Behavior: Perspectives on Evolutionary Mechanisms, Oxford University Press, Oxford, pp. 33-51.Google Scholar
  94. Toates, F. (1988). Motivation and emotion from a biological perspective. In Hamilton, V., Bower, G. H., and Frijda, N. H. (eds.), Cognitive Perspectives on Emotion and Motivation, Kluwer Academic, Dordrecht, pp. 3-35.Google Scholar
  95. Toates, F. (1996). Cognition and evolution-An organization of actions perspective. Behav. Process 35: 239-250.Google Scholar
  96. Tso, I. M. (1999). Behavioral response of Argiope trifasciata to recent foraging gain: A manipulative study. Am. Midl. Nat. 14(2): 238-246.Google Scholar
  97. Turesson, G. (1922). The species and the variety as ecological units. Hereditas 3: 100-113.Google Scholar
  98. Uetz, G. W., and Cangialosi, K. R. (1986). Genetic differences in social behavior and spacing in populations of Metepeira spinipes, a communal-territorial orb weaver (Araneae, Araneidae). J. Arachnol. 14: 159-173.Google Scholar
  99. Venner, S., Pasquet, A., and Leborgne, R. (2000). Web-building behaviour of the orb-weaving spider Zygiella x-notata: Influence of experience. Anim. Behav. 59: 603-611.Google Scholar
  100. Wade, M. J. (1998). The evolutionary genetics of maternal effects. In Mousseau, T. A., and Fox, C. W. (eds.), Maternal Effects as Adaptations, Oxford University Press, Oxford, pp. 5-21.Google Scholar
  101. Wanless, F. R. (1978). A revision of the spider genus Portia (Araneae: Salticidae). Bull. Br. Mus. Nat. Hist. (Zool.) 34: 83-124.Google Scholar
  102. West-Eberhard, M. J. (1989). Phenotypic plasticity and the origins of diversity. Annu. Rev. Ecol. Syst. 20: 249-278.Google Scholar
  103. Whitehouse, M. E. A. (1997). Experience influences male-male contests in the spider. Argyrodes antipodiana (Theridiidae: Araneae). Anim. Behav. 53: 913-923.Google Scholar
  104. Wilcox, R. S. (1979). Sex discrimination in Gerris remigis: Role of a surface wave signal. Science 206: 1325-1327.Google Scholar
  105. Wilcox, R. S., and Jackson, R. R. (1998). Cognitive abilities of araneophagic jumping spiders. In Balda, R. P., Pepperberg, I. M., and Kamil, A. C. (eds.), Animal Cognition in Nature, Academic Press, London.Google Scholar
  106. Witt, P. N. (1975). The web as a means of communication. Biosci. Commun. 1: 7-23.Google Scholar
  107. Yoerg, S. I. (1991). Ecological frames of mind: The role of cognition in behavioral ecology. Q. Rev. Biol. 66: 287-301.Google Scholar
  108. Zabka, M. (1993). Salticidae (Arachnida: Araneae) of the Oriental, Australian and Pacific Regions. IX. Genera Afraflacilla Berland & Millot 1941 and Evarcha Simon 1902. Invertebr. Taxon. 7: 279-295.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Robert R. Jackson
    • 1
  • Chris M. Carter
    • 1
  1. 1.Department of ZoologyUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations