Journal of Insect Behavior

, Volume 14, Issue 6, pp 725–737 | Cite as

The Life and Death of Hopkins' Host-Selection Principle

  • Andrew B. Barron
Article

Abstract

Hopkins' host-selection principle (HHSP) refers to the observation that many adult insects demonstrate a preference for the host species on which they themselves developed as larvae. The meaning of HHSP has changed significantly since its first proposal in 1916. This review considers how the meaning of HHSP has changed over time and considers the various mechanisms that could contribute to a behavioral bias for the developmental host. The assumption that HHSP implies that the behavior of adult insects is conditioned by larval experience has resulted in widespread condemnation of HHSP. Despite a great deal of attention, there is still very little convincing evidence for preimaginal conditioning of host choice in insects. But growing evidence indicates that genetic variation in behavior and conditioning during the life span of an adult insect can contribute to a preference for the host on which an insect developed. Insects can acquire adult oviposition or feeding preferences through exposure to chemical residues from the environment of earlier life history stages. The concepts of host races and host fidelity have become familiar and acceptable, while the association of HHSP with preimaginal conditioning has led to a general rejection of the term.

Hopkins' host-selection principle host race host choice preimaginal conditioning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Barron, A. B., and Corbet, S. A. (1999). Pre-imaginal conditioning in Drosophila revisited. Anim. Behav. 58: 621-628.Google Scholar
  2. Barron, A. B., and Corbet, S. A. (2000). Behavioural induction in Drosophila: Timing and specificity. Entomol. Exp. Appl. 94: 159-171.Google Scholar
  3. Berlocher, S. H. (1998). Host race or species? Allozyme characterisation of the ‘flowering dogwood fly', a member of the Rhagoletis pomenella complex. Heredity 83: 652-662.Google Scholar
  4. Bjorksten, T. A., and Hoffmann, A. A. (1998a). Persistence of experience effects in the parasitoid Trichogramma nr. brassicae. Ecol. Entomol. 23: 110-117.Google Scholar
  5. Bjorksten, T. A., and Hoffmann, A. A. (1998b). Plant cues influence searching behaviour and parasitism in the egg parasitoid Trichogramma nr. brassicae. Ecol. Entomol. 23: 355-362.Google Scholar
  6. Blum, M. (1983). Detoxification, deactivation and utilisation of plant compounds by insects. In Hedin, P. A. (ed.), Plant Resistance to Insects, American Chemical Society, Washington, DC.Google Scholar
  7. Boller, E. F., Katsoyannos, B. I., and Hippe, C. (1998). Host races of Rhagoletis cerasi L. (Dipt., Tephritidae): Effect of prior adult experience on oviposition site preference. J Appl. Entomol. 122: 231-237.Google Scholar
  8. Breed, M. D., Leger, E. A., Pearce, A. N., and Wang, Y. J. (1998). Comb wax effects on the ontogeny of honey bee nestmate recognition. Anim. Behav. 55: 13-20.Google Scholar
  9. Brown, K. S. (1984). Adult-obtained pyrrolizidine alkaloids defend Ithomiine butterflies against a spider predator. Nature 309: 707-708.Google Scholar
  10. Brown, K. S., Trigo, J. R., Francini, R. B., de Morais, A. B. B., and Motta, P. C. (1991). Aposematic insects on toxic host plants: Coevolution, colonization, and chemical emancipation. In Price, P.W., Lewinsohn, T. M., Fernandes, G.W., and Benson,W.W. (eds.), Plant-Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions, JohnWiley & Sons, New York, pp. 375-402.Google Scholar
  11. Brust. G. E., and Barbercheck, M. E. (1992). Effect of dietary cucurbitacin C on southern corn rootworm (Coleoptera: Chrysomelidae) egg survival. Environ. Entomol. 21: 1466-1471.Google Scholar
  12. Bush, G. L. (1992). Host race formation and sympatric speciation in Rhagoletis fruit flies (Diptera: Tephritidae). Psyche 99: 335-358.Google Scholar
  13. Bush, G. L. (1994). Sympatric speciation in animals: New wine in old bottles. Trends Ecol. Evol. 9: 285-288.Google Scholar
  14. Carlson, J. R. (1991). Olfaction in Drosophila: Genetic and molecular analysis. Trends Neurosci. 14: 520-524.Google Scholar
  15. Chen, P. S. (1984). The functional morphology and biochemistry of insect male accessory glands and their secretions. Annu. Rev. Entomol. 29: 233-255.Google Scholar
  16. Cooley, S. S., Prokopy, R. J., McDonald, P. T., and Wong, T. T. Y. (1986). Learning in oviposition site selection by Ceratitis capitata flies. Entomol. Exp. Appl. 40: 47-51.Google Scholar
  17. Corbet, S. A. (1985). Insect chemosensory responses: A chemical legacy hypothesis. Ecol. Entomol. 10: 143-153.Google Scholar
  18. Cortesero, A. M., Monge, J. P., and Huignard, J. (1995). Influence of two successive learning processes on the response of Eupelmus vuilleti Crw (Hymenoptera: Euplemidae) to volatile stimuli from hosts and host plants. J. Insect Behav. 8: 751-762.Google Scholar
  19. Courtney, S. P., and Kibota, T. T. (1990). Mother doesn't know best: Selection of hosts by ovipositing insects. In Bernays, E. A. (ed.), Insect/Plant Interactions, Vol. 2, CRC Press, Boca Raton, FL, pp. 161-188.Google Scholar
  20. Craig, T. P., Itami, J. K., Shantz, C., Abrahamson, W. G., Horner, J. D., and Craig, J. V. (2000). The influence of host plant variation and intraspecific competition on oviposition preference and offspring preformance in the host races of Eurosta solidaginis. Ecol. Entomol. 25: 7-18.Google Scholar
  21. Craighead, F. C. (1921). Hopkins host-selection principle as related to certain Cerambycid beetles. J. Agr. Res. 22: 189-220.Google Scholar
  22. Daloze, D., and Pasteels, J. M. (1979). Production of cardiac glycosides by chrysomelid beetles and larvae. J. Chem. Ecol. 5: 63-77.Google Scholar
  23. Diehl, S. R., and Bush, G. L. (1984). An evolutionary and applied perspective of insect biotypes. Annu. Rev. Entomol. 29: 471-504.Google Scholar
  24. Dussourd, D. E., Ubik, K., Harvis, C., Resch, J., Meinwald, J., and Eisner, T. (1988). Biparental defensive endowment of eggs with acquired plant alkaloid in the moth Utethesia ornatrix. Proc. Natl. Acad. Sci. USA 85: 5992-5996.Google Scholar
  25. Feder, J. L., and Filchak, K. E. (1999). It's about time: The evidence for host plant-mediated selection in the apple maggot fly, Rhagoletis pomonella, and its implications for fitness trade-offs in phytophagous insects. Entomol. Exp. Appl. 91: 211-225.Google Scholar
  26. Feder, J. L., Opp, S. B., Wlazlo, B., Reynolds, K., and Go, W. (1994). Host fidelity is an effective premating barrier between sympatric races of the apple maggot fly. Proc. Natl. Acad. Sci. USA 91: 7990-7994.Google Scholar
  27. Feder, J. L., Reynolds, K., Go, W., and Wang, E. C. (1995). Intra-and interspecific competition and host race formation in the apple maggot fly, Rhagoletis pomonella (Diptera: Tephritidae). Oecologia 101: 416-425.Google Scholar
  28. Feder, J. L., Roethele, J. B., Wlazlo, B., and Berlocher, S. H. (1997). Selective maintenance of allozyme differences among sympatric host races of the apple maggot fly. Proc. Natl. Acad. Sci. USA 94: 11417-11421.Google Scholar
  29. Filchak, K. E., Feder, J. L., Roethele, J. B., and Stolz, U. (1999). A field test for host-plant dependent selection on larvae of the apple maggot fly, Rhagoletis pomonella. Evolution 53: 187-200.Google Scholar
  30. Frey, J. E., and Bush, G. L. (1990). Rhagoletis sibling species and host races differ in host odor recognition. Entomol. Exp. Appl. 57: 123-131.Google Scholar
  31. Futuyma, D. J., and Peterson, S. C. (1985). Genetic variation in the use of resources by insects. Annu. Rev. Entomol. 30: 217-238.Google Scholar
  32. Futuyma, D. J., Herrmann, C., Millstein, S., and Keese, M.C. (1993). Apparent transgenerational effects of host plant in the leaf beetle Ophraella notulata (Coleoptera: Chrysomelidae). Oecologia 96: 365-372.Google Scholar
  33. Hanson, H. E. (1976). Comparative studies on induction of food choice preferences in lepidopterous larvae. In Jermy, T. (ed.), The Host Plant in Relation to Insect Behaviour and Reproduction, Plenum Press, New York, pp. 71-77.Google Scholar
  34. Hare, J. F., and Eisner, T. (1993). Pyrrolizidine alkaloid deters ant predators of Utethesia ornatrix eggs: Effects of alkaloid concentration, oxidation state, and prior exposure of ants to alkaloid-laden prey. Oecologia 96: 9-18.Google Scholar
  35. Hérard, F., Keller, M. A., Lewis, W. J., and Tumlinson, J. H. (1988). Beneficial arthropod behavior mediated by airborne semiochemicals. J. Chem. Ecol. 14: 1597-1606.Google Scholar
  36. Hershberger, W. A., and Smith, M. P. (1967). Conditioning in Drosophila melanogaster. Anim. Behav. 15: 259-262.Google Scholar
  37. Hoffmann, A. A. (1988). Early adult experience in Drosophila melanogaster. J. Insect Physiol. 14: 197-204.Google Scholar
  38. Hopkins, A.D. (1916). Economic investigations of the scolytid bark and timber beetles of North America. U.S. Department of Agriculture Program of Work for 1917, p. 353.Google Scholar
  39. Hopkins, A. D. (1917). A discussion of C. G. Hewitt's paper on “Insect Behaviour.” J. Econ. Entomol. 10: 92-93.Google Scholar
  40. Jaenike, J. (1982). Environmental modification of oviposition behavior in Drosophila. Am. Nat. 119: 784-802.Google Scholar
  41. Jaenike, J. (1983). Induction of host preference in Drosophila melanogaster. Oecologia 58: 320-325.Google Scholar
  42. Jaenike, J. (1988). Effects of early adult experience on host selection in insects: Some experimental and theoretical results. J. Insect Behav. 1: 3-15.Google Scholar
  43. Jaenike, J., and Holt, R. D. (1991). Genetic variation for habitat preference: Evidence and explanations. Am. Nat. 137(Suppl.): S67-S90.Google Scholar
  44. Jaenike, J., and Papaj, D. R. (1992). Behavioural plasticity and patterns of host use by insects. In Roitberg, B. D., and Isman, M. B. (eds.), Insect Chemical Ecology, an Evolutionary Approach, Chapman & Hall, London, pp. 245-264.Google Scholar
  45. Jaisson, P. (1980). Environmental preference induced experimentally in ants (Hymenoptera: Formicidae). Nature 286: 388-389.Google Scholar
  46. Jermy, T. (1987). The role of experience in the host selection of phytophagous insects. In Chapman, R. F., Bernays, E. A., and Stoffolano, J.G. (eds.), Perspectives in Chemoreception and Behavior, Springer-Verlag, New York, pp. 143-157.Google Scholar
  47. Jermy, T., Hanson, F. E., and Dethier, V. G. (1968). Induction of specific food preference in lepidopterous larvae. Entomol. Exp. Appl. 11: 211-230.Google Scholar
  48. Karowe, D. N. (1989). Facultative monophagy as a consequence of prior feeding experience: Behavioural and physiological specialisation in Colias philodice larvae. Oecologia 78: 106-111.Google Scholar
  49. Kester, K. M., and Barbosa, P. (1991). Postemergence learning in the insect parasitoid, Cotesia congregata (Say) (Hymenoptera: Braconidae). J. Insect Behav. 4: 727-742.Google Scholar
  50. Leclaire, M., and Brandl, R. (1994). Phenotypic plasticity and nutrition in a phytophagous insect: Consequences of colonising a new host. Oecologia 100: 379-385.Google Scholar
  51. Luna, I. G., and Prokopy, R. J. (1995). Behavioural differences between hawthorn-origin and apple-origin Rhagoletis pomonella flies in patches of host trees. Entomol. Exp. Appl. 74: 277-282.Google Scholar
  52. Manning, A. (1967). Pre-imaginal conditioning in Drosophila. Nature 216: 338-340.Google Scholar
  53. Menzel, R., and Müller, U. (1996). Learning and memory in honeybees: From behavior to neural substrates. Annu. Rev. Neurosci. 19: 379-404.Google Scholar
  54. Monteith, L. G. (1962). Apparent continual changes in the host preferences of Drino bohemica Mesn. (Diptera: Tachinidae), and their relation to the concept of host conditioning. Anim. Behav. 10: 292-299.Google Scholar
  55. Mousseau, T. A., and Dingle, H. (1991). Maternal effects in insect life histories. Annu. Rev. Entomol. 36: 511-534.Google Scholar
  56. Mousseau, T. A., and Fox, C. W. (1998). The adaptive significance of maternal effects. Trends Ecol. Evol. 13: 403-407.Google Scholar
  57. Phillips, W. M. (1977). Modification of feeding ‘preference’ in the flea beetle Haltica lythri (Coleoptera Chrysomelidae). Entomol. Exp. Appl. 21: 71-80.Google Scholar
  58. Prokopy, R. J., Averil, A. L., Cooley, S. S., and Roitberg, C. A. (1982). Associative learning in egg laying site selection by apple maggot flies. Science 218: 76-77.Google Scholar
  59. Prokopy, R. J., Papaj, D. R., Cooley, S. S., and Kallet, C. (1986). On the nature of learning in oviposition site acceptance by apple maggot flies. Anim. Behav. 34: 98-107.Google Scholar
  60. Prokopy, R. J., Diehl, S. R., and Cooley, S. S. (1988). Behavioural evidence for host races in Rhagoletis pomonella flies. Oecologia 76: 138-147.Google Scholar
  61. Prokopy, R. J., Jun Duan, J., and Vargas, R. I. (1996). Potential for host range expansion in Ceratitis capitata flies: Impact of proximity of adult food to egg-laying sites. Ecol. Entomol. 21: 295-299.Google Scholar
  62. Ray, S. (1999). Survival of olfactory memory through metamorphosis in the fly Musca domestica. Neurosci. Lett. 259: 37-40.Google Scholar
  63. Reichstein, T., von Euw, J., Parsons, J., and Rothschild, M. (1968). Heart poisons in the Monarch butterfly. Science 161: 861-866.Google Scholar
  64. Richmond, H. A. (1933). Host selection studies of Dendroctonus monticolae Hopk. in southern British Columbia. For. Chron. 9: 60-61.Google Scholar
  65. Rojas, J. C., and Wyatt, T. D. (1999). The role of pre-and post-imaginal experience in the host-finding and oviposition behaviour of the cabbage moth. Phys. Entomol. 24: 83-89.Google Scholar
  66. Röse, U. S. R., Alborn, H.T., Makranczy, G., Lewis, W. J., and Tumlinson, J. H. (1997). Host recognition by the specialist endoparasitoid Microplitis croceipes (Hymenoptera: Braconidae): Role of host-and plant-related volatiles. J. Insect Behav. 10: 313-330.Google Scholar
  67. Rossiter, M. C. (1996). Inheritence and consequences of inherited environmental effects. Annu. Rev. Ecol. Syst. 27: 451-476.Google Scholar
  68. Sezer, M., and Butlin, R. K. (1998). The genetic basis of oviposition preference differences between sympatric host races of the brown planthopper (Nilaparvata lugens). Proc. Roy. Soc. London B 265: 2399-2405.Google Scholar
  69. Smith, M. A., and Cornell, V. C. (1979). Hopkins host-selection in Nasonia vitripennis and its implications for sympatric speciation. Anim. Behav. 27: 365-370.Google Scholar
  70. Struble, G. R. (1935). Some recent studies of host selection by the mountain pine beetle in the California region: Season of 1935. Unpublished report.U.S. Dept. Agr., Bur. Entomol. Plant Quar., Forest Insect Lab, Berkeley CA. 9pp.Google Scholar
  71. Swaine, J.M. (1933). The relation of insect activities to forest development as exemplified in the forests of eastern North America. Sci. Agr. 14: 8-31.Google Scholar
  72. Technau, G., and Heisenberg, M. (1982). Neural reorganisation during metamorphosis of the corpora pendunculata in Drosophila melanogaster. Nature 295: 405-407.Google Scholar
  73. Thorpe, W. H. (1930). Biological races in insects and allied groups. Biol. Rev. 5: 177-212.Google Scholar
  74. Thorpe, W. H. (1939). Further studies on pre-imaginal olfactory conditioning in insects. Proc. R. Soc. Lond. Ser. B 127: 424-433.Google Scholar
  75. Thorpe, W. H., and Jones, F. G. W. (1937). Olfactory conditioning in a parasitic insect and its relation to the problem of host selection. Proc. R. Soc. Lond. Ser. B 124: 56-81.Google Scholar
  76. Truman, J. W. (1990). Metamorphosis of the CNS of Drosophila. J. Neurobiol. 21: 1072-1084.Google Scholar
  77. Tully, T., Cambiazo, V., and Kruse, L. (1994). Memory through metamorphosis in normal and mutant Drososphila. J. Neurosci. 14: 68-74.Google Scholar
  78. van Emden, H. F., Sponagl, B., Wagner, E., Baker, T., Ganguly, S., and Douloumpaka, S. (1996). Hopkins’ 'host selection principle', another nail in its coffin. Physiol. Entomol. 21: 325-328.Google Scholar
  79. Vet, L. E. M., and van Opzeeland, K. (1984). The influence of conditioning on olfactory microhabitat and host selection in Asobara tabida (Nees) and A. rufescens (Foerster) (Braconidae: Alysiinae) larval parasitoids of Drosophilidae. Oecologia 63: 171-177.Google Scholar
  80. Vet, L. E. M., Lewis, W. J., and Cardé, R. T. (1995). Parasitoid foraging and learning. In Cardé, R. T. (ed.), Chemical Ecology of Insects 2, Chapman & Hall, New York, pp. 65-101.Google Scholar
  81. Walsh, B. D. (1864). On phytophagic varieties and phytophagic species. Proc. Entomol. Soc. Philadelphia 3: 403-430.Google Scholar
  82. Wardle, A. R., and Borden, J. H. (1985). Age-dependent associative learning by Exeristes roborator (F). (Hymenoptera: Ichneumonidae). Can. Entomol. 117: 605-616.Google Scholar
  83. Wasserman, S. S. (1982). Gypsy moth (Lymantria dispar): Induced feeding preferences as a bioassay for phenetic similarity among hostplants. Proc. 5th Int.Symp. Insect Plant Relation., pp. 261-276.Google Scholar
  84. Wiklund, C. (1973). Host plant suitability and the mechanism of host selection in larvae of Papilio machaon. Entomol. Exp. Appl. 16: 232-242.Google Scholar
  85. Wood, D. L. (1963). Studies on host selection by Ips confusus (Leconte). Univ. Calif. Publ. Entomol. 27: 241-282.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Andrew B. Barron
    • 1
  1. 1.Department of Entomology, Morrill HallUniversity of Illinois at Urbana–ChampaignUrbana

Personalised recommendations