Pharmaceutical Research

, Volume 18, Issue 11, pp 1521–1527 | Cite as

Gliadin Nanoparticles as Carriers for the Oral Administration of Lipophilic Drugs. Relationships Between Bioadhesion and Pharmacokinetics

  • Miguel Angel Arangoa
  • Miguel Angel Campanero
  • Maria Jesus Renedo
  • Gilles Ponchel
  • Juan Manuel Irache


Purpose. The aim of this work was to evaluate the bioadhesive properties of non-hardened gliadin nanoparticles (NPs) and cross-linked gliadin nanoparticles (CL-NP) in the carbazole pharmacokinetic parameters obtained after the oral administration of these carriers.

Methods. A deconvolution model was used to estimate the carbazole absorption when loaded in the different gliadin nanoparticles. In addition, the elimination rates of both adhered and non-adhered nanoparticulate fractions within the stomach were estimated.

Results. Nanoparticles dramatically increased the carbazole oral bioavailability up to 49% and provided sustained release properties related to a decrease of the carbazole plasma elimination rate. The carbazole release rates from nanoparticles (NP and CL-NP), calculated by deconvolution, were found to be of the same order as the elimination rates of the adhered fractions of nanoparticles in the stomach mucosa. In addition, good correlation was found between the carbazole plasmatic levels, during the period of time in which the absorption process prevails, and the amount of adhered carriers to the stomach mucosa.

Conclusion. Gliadin nanoparticles significantly increased the carbazole bioavailability, providing sustained plasma concentrations of this lipophilic molecule. These pharmacokinetic modifications were directly related to the bioadhesive capacity of these carriers with the stomach mucosa.

absorption bioadhesion bioavailability deconvolution gliadin nanoparticles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Longer, H. S. Ch'ng, and J. R. Robinson. Bioadhesive polymers as platforms for oral controlled drug delivery III: Oral delivery of chlorothiazide using a bioadhesive polymer. J. Pharm. Sci. 74:406-411 (1985).Google Scholar
  2. 2.
    J. Kreuter. Peroral administration of nanoparticles. Adv. Drug Deliv. Rev. 7:71-86 (1991).Google Scholar
  3. 3.
    S. Sakuma, R. Sudo, N. Suzuki, H. Kikuchi, M. Akashi, and M. Hayashi. Mucoadhesion of polystyrene nanoparticles having surface hydrophilic polymeric chains in the gastrointestinal tract. Int. J. Pharm. 177:161-172 (1999).Google Scholar
  4. 4.
    C. Durrer, J. M. Irache, F. Puisieux, D. Duchêne, and G. Ponchel. Mucoadhesion of latexes. II. Adsorption isotherms and desorption studies. Pharm. Res. 11:680-683 (1994).Google Scholar
  5. 5.
    P. K. Gupta, S. H. Leung, and J. R. Robinson. Bioadhesives/Mucoadhesives in drug delivery to the gastrointestinal tract. In V. Lenaerts, and R. Gurny (eds.), Bioadhesive Drug Delivery Systems, CRC Press, Boca Raton. FL; 1990, pp. 65-92.Google Scholar
  6. 6.
    C. M. Lehr. Bioadhesion technologies for the delivery of peptide and protein drugs to the gastrointestinal tract. Crit. Rev. Ther. Drug Carrier Syst. 11:119-160 (1994).Google Scholar
  7. 7.
    S. Sakuma, N. Suzuki, H. Kikuchi, K. I. Hiwatari, K. Arikawa, A. Kishida, and M. Akashi. Oral peptide delivery using nanoparticles composed of novel graft copolymers having hydrophobic backbone and hydrophilic branches. Int. J. Pharm. 149:93-106 (1997).Google Scholar
  8. 8.
    P. Maincent, R. Le Verge, P. Sado, P. Couvreur, and J. P. Devissaguet. Disposition kinetics and oral bioavailability of vinca-min-loaded polyalkycyanoacrylate nanoparticles. J. Pharm. Sci. 75:955-958 (1986).Google Scholar
  9. 9.
    D. E. Chickering III, J. S. Jacob, T. A. Desai, M. Harrison, W. P. Harris, C. N. Morrell, P. Chaturvedi, and E. Mathiowitz. Bioadhesive microspheres: III. An in vivo transit and bioavailability study of drug-loaded alginate and poly(fumaric-co-sebacic anhydride) microspheres. J. Control. Release 48:35-46 (1997).Google Scholar
  10. 10.
    E. Mathiowitz, J. S. Jacob, Y. S. Jong, G. P. Carino, D. E. Chikering, P. Chaturvedi, C. A. Santos, K. Vijayaraghavan, S. Montgomery, M. Basset, and C. Morrell. Biologically erodable microspheres as potential oral drug delivery systems. Nature 386:411-414 (1997).Google Scholar
  11. 11.
    Y. Akiyama, N. Nagahara, T. Kashihara, S. Hirai, and H. Toguchi. In vitro and in vivo evaluation of mucoadhesive microspheres prepared for the gastrointestinal tract using polyglycerol esters of fatty acids and a poly(acrylic acid) derivative. Pharm. Res. 12:397-405 (1995).Google Scholar
  12. 12.
    Y. Akiyama, N. Nagahara, E. Nara, M. Kitano, S. Iwasa, I. Yamamoto, J. Azuma, and Y. Ogawa. Evaluation of oral mucoadhesive microspheres in man on the basis of the pharmacokinetics of furosemide and riboflavin, compounds with limited gastrointestinal absorption sites. J. Pharm. Pharmacol. 50:159-166 (1998).Google Scholar
  13. 13.
    M. A. Arangoa, G. Ponchel, A. M. Orecchioni, M. J. Renedo, D. Duchêne, and J. M. Irache. Bioadhesive potential of gliadin nanoparticulate systems. Eur. J. Pharm. Sci. 11:333-341 (2000).Google Scholar
  14. 14.
    M. A. Arangoa. New nanoparticulate dosage forms from gliadin: development and evaluation of the bioadhesive potential. Thesis, University of Navarra, Pamplona, 1999.Google Scholar
  15. 15.
    P. Ruelle, E. Sarraf, and U. W. Kesselring. Prediction of carbazole solubility and its dependence upon the solvent nature. Int. J. Pharm. 104:125-133 (1994).Google Scholar
  16. 16.
    M. A. Arangoa, M. A. Campanero, Y. Popineau, and J. M. Irache. Evaluation and characterisation of gliadin nanoparticles and isolates by reversed-phase HPLC. J. Cereal Sci. 31:223-228 (2000).Google Scholar
  17. 17.
    M. A. Arangoa, M. A. Campanero, Y. Popineau, and J. M. Irache. Electrophoretic separation and characterisation of gliadin fractions from isolates and nanoparticulate drug delivery systems. Chromatographia 50:243-246 (1999).Google Scholar
  18. 18.
    I. Ezpeleta, J. M. Irache, S. Stainmesse, C. Chabenat, J. Gueguen, Y. Popineau, and A. M. Orecchioni. Gliadin nanoparticles for the controlled release of all-trans-retinoic acid. Int. J. Pharm. 131: 191-200 (1996).Google Scholar
  19. 19.
    B. P. Imbimbo, E. Imbimbo, S. Daniotti, D. Verotta, and G. Bassotti. A new criterion for selection of pharmacokinetic multiexponential equations. J. Pharm. Sci. 77:784-789 (1988).Google Scholar
  20. 20.
    M. Rowland and T. N. Tozer. Clinical pharmacokinetics. Concepts and applications. Lea and Febiger, Philadelphia, 1995.Google Scholar
  21. 21.
    J. M. Lanao, M. T. Vicente, and M. L. Sayalero. Calculation of partial components of biovailability in slow release formulations using model-independent methods. Int. J. Pharm. 117:113-118 (1995).Google Scholar
  22. 22.
    D. P. Callender, N. Jayaprakash, A. Bell, V. Petraitis, R. Petratienes, M. Candelario, R. Schaufele, J. M. Dunn, S. Sei, T. J. Walsh, and F. M. Balis. Pharmacokinetics of oral zidovudine entrapped in biodegradable nanospheres in rabbits. Antimicrob. Agents Chemother. 43:972-974 (1999).Google Scholar
  23. 23.
    P. R. Chaturvedi. Pharmacokinetics of microparticulate systems. In S. Cohen, and H. Bernstein (eds.), Microparticulate systems for the delivery of proteins and vaccines, Drugs and the Pharmaceutical Sciences 77, Marcel Dekker, New York, 1996, pp. 321-347.Google Scholar
  24. 24.
    J. M. Lanao, M. T. Vicente, L. Sayalero, and A. Dominguez-Gil. A computer program (DCN) for numerical convolution and deconvolution of pharmacokinetic functions. J. Pharmacobiodyn. 15:203-214 (1992).Google Scholar
  25. 25.
    S. E. Tett, D. J. Cutler, and R. O. Day. Bioavailability of hydroxychloroquine tablets assessed with deconvolution techniques. J. Pharm. Sci. 81:155-159 (1992).Google Scholar
  26. 26.
    X. Wu, F. Yamashita, and M. Hashida. Deconvolution analysis for absorption and metabolism of aspirin in microcapsules. Biol. Pharm. Bull. 22:1212-1216 (1999).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Miguel Angel Arangoa
    • 1
  • Miguel Angel Campanero
    • 2
  • Maria Jesus Renedo
    • 1
  • Gilles Ponchel
    • 3
  • Juan Manuel Irache
    • 1
  1. 1.Centro Galénico, Departamento de Farmacia y Tecnología FarmacéuticaUniversidad de NavarraPamplonaSpain
  2. 2.Servicio de Farmacología ClínicaClínica Universitaria de NavarraPamplonaSpain
  3. 3.Physico chimie, Pharmacotechnie, Biopharmacie, UMR CNRS 8612Université de Paris-SudChâtenay MalabryFrance

Personalised recommendations