, Volume 456, Issue 1–3, pp 21–32 | Cite as

Status of the Nemertea as predators in marine ecosystems

  • Martin Thiel
  • Inken Kruse


The ecology of nemertean predators in marine ecosystems is reviewed. Nemerteans occur in most marine environments although usually in low abundances. Some species, particularly in intertidal habitats, may reach locally high densities. During specific time periods appropriate for hunting, nemerteans roam about in search of prey. Upon receiving a stimulus (usually chemical cues), many nemertean species actively pursue their prey and follow them into their dwellings or in their tracks. Other species (many hoplonemerteans) adopt a sit-and-wait strategy, awaiting prey items in strategic locations. Nemerteans possess potent neurotoxins, killing even highly mobile prey species within a few seconds and within the activity range of its attacker. Most nemertean species prey on live marine invertebrates, but some also gather on recently dead organisms to feed on them. Heteronemerteans preferentially feed on polychaetes, while most hoplonemerteans prey on small crustaceans. The species examined to date show strong preferences for selected prey species, but will attack a variety of alternative prey organisms when deprived of their favourite species. Ontogenetic changes in prey selection appear to occur, but no further information about, e.g. size selection, is available. Feeding rates as revealed from short-term laboratory experiments range on the order of 1–5 prey items d−1. These values apparently are overestimates, since long-term experiments report substantially lower values (0.05–0.3 prey items d−1). Nemerteans have been reported to exert a strong impact on the population size of their prey organisms through their predation activity. Considering low predation rates, these effects may primarily be a result of indirect and additive interactions. We propose future investigations on these interactive effects in combination with other predators. Another main avenue of nemertean ecological research appears to be the examination of their role in highly structured habitats such as intertidal rocky shore and coral reef environments.

nemertean foraging feeding rate predation prey selection benthos 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams, P. A., C. Hill & R. Elmgren, 1990. The functional response of the predatory polychaete, Harmothoe sarsi, to the amphipod, Pontoporeia affinis. Oikos 59: 261–269.Google Scholar
  2. Ambrose, W. G. Jr., 1991. Are infaunal predators important in structuring marine soft-bottom communities? Am. Zool. 31: 849–860.Google Scholar
  3. Amerongen, H. W. & F. S. Chia, 1982. Behavioural evidence for a chemoreceptive function of the cerebral organs in Paranemertes peregrina Coe (Hoplonemertea: Monostilifera). J. exp. mar. Biol. Ecol. 64: 11–16.Google Scholar
  4. Arias, A. M. & P. Drake, 1994. Structure and production of the benthic macroinvertebrate community in a shallow lagoon in the Bay of Cadiz. Mar. Ecol. Prog. Ser. 115: 151–167.Google Scholar
  5. Bartsch, I., 1973. Zur Nahrungsaufnahme von Tetrastemma melanocephalum (Nemertini). Helgoländer wiss. Meeresunters 25: 326–331.Google Scholar
  6. Bartsch, I., 1975. Nahrung und Nahrungsaufnahme bei zwei Schnurwurm-(Nemertinen-) Arten. Mikrokosmos 1: 16–19.Google Scholar
  7. Bartsch, I., 1977. Zur Biologie des Nemertinen Tetrastemma melanocephalum (Johnston). Faun.-ökol. Mitt. 5: 125–128.Google Scholar
  8. Cáceres-Martínez, J. & R. Vásquez-Yeomans, 1999. Metazoan parasites and pearls in coexisting mussel species: Mytilus californianus, Mytilus galloprovincialis and Septifer bifurcatus, from an exposed rocky shore in Baja Califonia, Northwestern Mexico. The Veliger 42: 10–16.Google Scholar
  9. Carrasco, F. D., V. A. Gallardo & S. Medrano, 1988. Sublittoral macrobenthic infaunal assemblages of two nearby embayments from Central Chile. Int. Revue ges. Hydrobiol. 73: 441–455.Google Scholar
  10. Cash, K. J, F. J. Wrona & G. J. Scrimgeour, 1995. The effects of group size on per capita ingestion in flatworms. Freshwat. Biol. 34: 477–483.Google Scholar
  11. Chernyshev, A. V., 2000. Food and feeding behavior of the nemertean Tortus tokmakovae. Russ. J. Mar. Biol. 26: 120–123.Google Scholar
  12. Christy, J. H., S. Goshima, P. R. Y. Backwell & T. J. Kreuter, 1998. Nemertean predation on the tropical fiddler crab Uca musica. Hydrobiologia 365: 233–239.Google Scholar
  13. Cosson, N., M. Sibuet & J. Galeron, 1997. Community structure and spatial heterogeneity of the deep-sea macrofauna at three contrasting stations in the tropical northeast Atlantic. Deep-Sea Res. 44: 247–269.Google Scholar
  14. Dalby, J. E. Jr., 1996. Nemertean, copepod and amphipod symbionts of the dimorphic ascidian Pyura stolonifera near Melbourne, Australia: specificities to host morphs, and factors affecting prevalences. Mar. Biol. 126: 231–243.Google Scholar
  15. Feller, R. J., P. Roe & J. L. Norenburg, 1998. Dietary immunoassay of pelagic nemerteans by use of cross-reacting polyclonal antibodies: preliminary findings. Hydrobiologia 365: 263–269.Google Scholar
  16. Flach, E. C. & W. de Bruin, 1994. Does the activity of cockles, Cerastoderma edule (L.) and lugworms, Arenicola marina L., make Corophium volutator Pallas more vulnerable to epibenthic predators: a case of interaction modification? J. exp. mar. Biol. Ecol. 182: 265–285.Google Scholar
  17. Gaston, G. R., C. M. Cleveland, S. S. Brown & C. F. Rakocinski, 1997. Benthic-pelagic coupling in northern Gulf of Mexico estuaries: do benthos feed directly on phytoplankton. Gulf Res. Rep. 9: 231–237.Google Scholar
  18. Gibson, R., 1972. Nemerteans. Hutchinson University Library, London, 224 pp.Google Scholar
  19. Gibson, R., 1994. Nemerteans. In Barnes R. S. K. & J. H. Crothers (eds), Synopsis of the British Fauna, New Series, No. 24, 2nd edn. FSC Publications, Shrewsbury. 224 pp.Google Scholar
  20. Gibson, R. & J. B. Jennings, 1969. Observations on the diet, feeding mechanisms, digestion and food reserves of the entocommensal rhynchocoelan Malacobdella grossa. J. mar. biol. Ass. U.K. 49: 17–32.Google Scholar
  21. Gibson, R. & J. Junoy, 1991. A new species of Tetrastemma (Nemertea: Enopla: Monostiliferoidea) from Ría de Foz, north-western Spain, found living in the mantle cavity of the bivalve mollusc Scrobicularia plana. Zool. J. linn. Soc. 103: 225–240.Google Scholar
  22. Heine, J. N., J. B. McClintock, M. Slattery & J. Weston, 1991. Energetic composition, biomass, and chemical defense in the common Antarctic nemertean Parborlasia corrugatus McIntosh. J. exp. mar. Biol. Ecol. 153: 15–25.Google Scholar
  23. Hewitt, J. E., R. D. Pridmore, S. F. Thrush & V. J. Cummings, 1997. Assessing the short-term stability of spatial patterns of macrobenthos in a dynamic estuarine system. Limnol. Oceanogr. 42: 282–288.Google Scholar
  24. Jazdzewski, K, W. Jurasz, W. Kittel, E. Presler, P. Presler & J. Sicinski, 1986. Abundance and biomass estimates of the benthic fauna in Admiralty Bay, King George Island, South Shetland Islands. Polar Biol. 6: 5–16.Google Scholar
  25. Jennings, J. B. & R. Gibson, 1969. Observations of the nutrition of seven species of rhynchocoelan worms. Biol. Bull. 136: 405–433.Google Scholar
  26. Kem, W. R., 1985. Structure and action of nemertine toxins. Am. Zool. 25: 99–111.Google Scholar
  27. Kruse, I., 1996. Einnischung der Nemertine Tetrastemma melanocephalum in die Lebensgemeinschaft des “Corophium-Watts”. Unpubl. diploma thesis, Kiel: 74 pp.Google Scholar
  28. Kruse, I. & F. Buhs, 2000. Preying at the edge of the sea: the nemertine Tetrastemma melanocephalum and its amphipod prey on high intertidal sandflats. Hydrobiologia 426: 43–55.Google Scholar
  29. Kuris, A. M., 1993. Life cycles of nemerteans that are symbiotic egg predators of decapod Crustacea: adaptations to host life histories. Hydrobiologia 266: 1–14.Google Scholar
  30. Lasiak, T. A. & J. G. Field, 1995. Community-level attributes of exploited and non-exploited rocky infratidal macrofaunal assemblages in Transkei. J. exp. mar. Biol. Ecol. 186: 33–53.Google Scholar
  31. Lintas, C. & R. Seed, 1994. Spatial variation in the fauna associated with Mytilus edulis on a wave-exposed rocky shore. J.moll. Stud. 60: 165–174.Google Scholar
  32. López-Jamar, E. & J. Mejuto, 1986. Evolución temporal de cuatro comunidades infaunales submareales de las Rías de Arosa y Muros. Resultados Preliminares. Bol. Inst. esp. Oceanog. 3: 95–110.Google Scholar
  33. McArthur, V. E., 1998. Predation on juvenile lagoonal mud snails (Hydrobia neglecta). J. mar. biol. Ass. U.K. 78: 891–901.Google Scholar
  34. McDermott, J. J., 1976. Observations on the food and feeding behavior of estuarine nemertean worms belonging to the order Hoplonemertea. Biol. Bull. 150: 57–68.Google Scholar
  35. McDermott, J. J., 1984. The feeding biology of Nipponemertes pulcher (Johnston) (Hoplonemertea), with some ecological implications. Ophelia 23: 1–21.Google Scholar
  36. McDermott, J. J., 1988. The role of hoplonemerteans in the ecology of seagrass communities. Hydrobiologia 156: 1–11.Google Scholar
  37. McDermott, J. J., 1993. Nemertea inhabiting the Haploops (Amphipoda) community of the northern Øresund with special reference to the biology of Nipponemertes pulcher (Hoplonemertea). Hydrobiologia 266: 15–28.Google Scholar
  38. McDermott, J. J., 2001. Status of the Nemertea as prey in marine ecosystems. Hydrobiologia 456: 7–20.Google Scholar
  39. McDermott, J. J. & P. Roe, 1985. Food, feeding behavior and feeding ecology of nemerteans. Am. Zool. 25: 113–125.Google Scholar
  40. McDermott, J. J. & R. L. Snyder 1988. Food and feeding behavior of the hoplonemertean Oerstedia dorsalis. Hydrobiologia 156: 47–51.Google Scholar
  41. Menn, I. & W. Armonies, 1999. Predatory Promesostoma species (Plathelminthes, Rhabdocoela) in the Wadden Sea. J. Sea Res. 41: 309–320.Google Scholar
  42. Nordhausen, W., 1987. Nemertinen als Räuber im Wattboden der Nordsee – Untersuchungen an Lineus viridis (Müller 1774). Unpubl. Diploma thesis, Göttingen, 1–70.Google Scholar
  43. Nordhausen, W., 1988. Impact of the nemertean Lineus viridis on its polychaete prey on an intertidal sandflat. Hydrobiologia 156: 39–46.Google Scholar
  44. Norenburg, J. L. & P. Roe, 1998. Reproductive biology and strategy of some pelagic nemerteans. Hydrobiologia 365: 73–91.Google Scholar
  45. Olsgard, F., 1999. Effects of copper contamination on recolonisation of subtidal marine soft sediments – an experimental field study. Mar. Pollut. Bull. 448–462.Google Scholar
  46. Olsgard, F. & J. R. Hasle, 1993. Impact of waste from titanium mining on benthic fauna. J. exp. mar. Biol. Ecol. 172: 185–213.Google Scholar
  47. Oug, E., 1998. Relating species patterns and environmental variables by canonical ordination: an analysis of soft-bottom macrofauna in the region of Tromsø, Northern Norway. Mar. Environ. Res. 45: 29–45.Google Scholar
  48. Palacín, C., D. Martín & J. M. Gili, 1991. Features of spatial distribution of benthic infauna in a Mediterranean shallow-water bay. Mar. Biol. 110: 315–321.Google Scholar
  49. Petersen, C. G. J., 1918. The sea bottom and its production of fish food. Rep. Danish biol. Stn. 25: 1–62.Google Scholar
  50. Prena, J., 1996. The status of the intertidal soft-bottom macrofauna 6 months after the GulfWar oil spill. In Krupp, F., A. H. Abuzinada & I. A. Nader (eds), A Marine Wildlife Sanctuary for the Arabian Gulf. Environmental and Conservation Following the 1991 GulfWar Oil Spill. NCWCD, Riyadh and Senckenberg Research Institute, Frankfurt: 128–137.Google Scholar
  51. Prena, J., F. Gosselck, V. Schroeren & J. Voss, 1997. Periodic and episodic benthos recruitment in southwest Mecklenburg Bay (western Baltic Sea). Helgoländer wiss. Meeresunters. 51: 1–21.Google Scholar
  52. Reise, K., 1985. Tidal Flat Ecology. Ecological Studies 54. Springer-Verlag, Berlin: 191 pp.Google Scholar
  53. Roe, P., 1970. The nutrition of Paranemertes peregrina (Rhynchocoela: Hoplonemertea). I. Studies on food and feeding behavior. Biol. Bull. 139: 80–91.Google Scholar
  54. Roe, P., 1971. Life history and predator-prey interactions of the nemertean Paranemertes peregrina Coe. Unpubl. Ph.D. Thesis, University of Seattle: 129 pp.Google Scholar
  55. Roe, P., 1976. Life history and predator-prey interactions of the nemertean Paranemertes peregrina Coe. Biol. Bull. 150: 80–106.Google Scholar
  56. Roe, P., 1979. A comparison of aspects of the biology of Paranemertes peregrina (Nemertea) from Bodega Harbor, California, and Washington State. Pacific Sci. 33: 281–287.Google Scholar
  57. Roe, P., 1993. Aspects of the biology of Pantinonemertes californiensis, a high intertidal nemertean. Hydrobiologia 266: 29–44.Google Scholar
  58. Roe, P. & J. L. Norenburg, 1999. Observations on depth distribution, diversity and abundance of pelagic nemerteans from the Pacific Ocean off California and Hawaii. Deep-Sea Res. I 46: 1201–1220.Google Scholar
  59. Romero-Wetzel, M. B. & S. A. Gerlach, 1991. Abundance, biomass, size-distribution and bioturbation potential of deep-sea macrozoobenthos on the Vøring Plateau (1200–1500 m, Norwegian Sea). Meeresforsch. 33: 247–265.Google Scholar
  60. Rowell, T. W. & P. Woo, 1990. Predation by the nemertean worm, Cerebratulus lacteus Verrill, on the soft-shell clam, Mya arenaria Linnaeus, 1758, and its apparent role in the destruction of a clam flat. J. Shellfish Res. 9: 291–297.Google Scholar
  61. Saiz-Salinas, J. I., A. Ramos, F. J. García, J. S. Troncoso, G. San Martín, C. Sanz & C. Palacín, 1997. Quantitative analysis of macrobenthic soft-bottom assemblages in South Shetland waters (Antarctica). Polar Biol. 17: 393–400.Google Scholar
  62. Saiz-Salinas, J. I., A. Ramos, T. Munilla & M. Rauschert, 1998. Changes in the biomass and dominant feeding mode of benthic assemblages with depth off Livingston Island (Antarctica). Polar Biol. 19: 424–428.Google Scholar
  63. Seaby, R. M. H., A. J. Martin & J. O. Young, 1995. The reaction time of leech and triclad species to crushed prey and the significance of this for their coexistence in British lakes. Freshwat. Biol. 34: 21–28.Google Scholar
  64. Shields, J. D. & A. M. Kuris, 1988. An in vitro analysis of egg mortality in Cancer anthonyi: The role of symbionts and temperature. Biol. Bull. 174: 267–275.Google Scholar
  65. Sih, A., G. Englund & D. Wooster, 1998. Emergent impacts of multiple predators on prey. Trends Ecol. Evol. 13: 350–355.Google Scholar
  66. Stricker, S. A., 1985. A new species of Tetrastemma (Nemertea, Monostilifera) from San Juan Island, Washington, U.S.A. Can. J. Zool. 63: 682–690.Google Scholar
  67. Thiel, M., 1992. Zur Ökologie von Nemertinen im Wattenmeer. Unpubl. Diploma thesis, Kiel: 1–69.Google Scholar
  68. Thiel, M., 1998. Nemertines as predators on tidal flats – High Noon at low tide. Hydrobiologia 265: 241–250.Google Scholar
  69. Thiel, M. & G. Francés-Zubillaga, 1998. Temporal and spatial occurrence of Tetrastemma fozensis in intertidal bivalves. Hydrobiologia 265: 257–262.Google Scholar
  70. Thiel, M. & K. Reise, 1993. Interaction of nemertines and their prey on tidal flats. Neth. J. Sea Res. 31: 163–172.Google Scholar
  71. Thiel, M. & N. Ullrich, 2002. Hard rock versus soft bottom: The fauna associated with intertidal mussel beds on hard bottoms along the coast of Chile, and considerations on the functional role of mussel beds. Helgoland Mar. Res., in pressGoogle Scholar
  72. Thiel, M. & J. Vásquez, 2000. Are kelp holdfasts islands on the ocean floor? – Indication for temporarily closed aggregations of peracarid crustaceans. Hydrobiologia 440: 45–54.Google Scholar
  73. Thiel, M. & L. Watling, 1998. Effects of green algal mats on infaunal colonization of a New England mud flat – long-lasting effects, but highly localized. Hydrobiologia 375/376: 177–189.Google Scholar
  74. Thiel, M., W. Nordhausen & K. Reise, 1995. Nocturnal surface activity of endobenthic nemertines on tidal flats. In Eleftheriou, A., A. D. Ansell & C.J. Smith (eds), Biology and Ecology of Shallow Coastal Waters. Proceedings of the 28th European Marine Biology Symposium, Iraklio, Crete, 1993. Olsen & Olsen, Fredensborg, Denmark: 283–293.Google Scholar
  75. Thiel, M., N. Ullrich & N. Vásquez, 2001. Predation rates of nemertean predators: the case of a rocky shore hoplonemertean feeding on amphipods. Hydrobiologia 456: 45–57.Google Scholar
  76. Thrush, S. F., R. D. Pridmore, J. E. Hewitt & V. J. Cummings, 1992. Adult infauna as facilitators of colonization on intertidal sandflats. J. exp. mar. Biol. Ecol. 159: 253–265.Google Scholar
  77. Tsuchiya, M. & M. Nishihira, 1985. Islands of Mytilus as a habitat for small intertidal animals: effect of island size on community structure. Mar. Ecol. Prog. Ser. 25: 71–81.Google Scholar
  78. Young, J. O., R. M. H. Seaby & A. J. Martin, 1995. Contrasting mortality in young freshwater leeches and triclads. Oecologia 101: 317–323.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Martin Thiel
    • 1
  • Inken Kruse
    • 2
  1. 1.Facultad Ciencias del MarUniversidad Católica del Norte, LarrondoCoquimboChile
  2. 2.Wattenmeerstation SyltAlfred-Wegener-Institut für Polar- und MeeresforschungList/SyltGermany

Personalised recommendations