Journal of Materials Science

, Volume 36, Issue 24, pp 5733–5737 | Cite as

Review: Materials for vibration damping

  • D. D. L. Chung

Abstract

Materials for vibration damping, including metals, polymers, cement and their composites, are reviewed. Metals and polymers are dominant due to their viscoelasticity. Damping enhancement mainly involves microstructural design for metals, interface design for polymers and admixture use for cement.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. J. Hollkamp and R. W. Gordon, Smart Mater. & Struct. 5(5) (1996) 715.Google Scholar
  2. 2.
    I. G. Ritchie and Z.-L. Pan, Metallurgical Transactions A—Physical Metallurgy & Mater. Sci. 22A(3) (1991) 607.Google Scholar
  3. 3.
    E. M. Kerwin Jr. and E. E. Ungar, in Proceedings of the ACS Division of Polymeric Materials: Science and Engineering, Dallas, Spring 1989 (ACS, Washington, DC, 1989) Vol. 60, p. 816.Google Scholar
  4. 4.
    S. N. Ganeriwala, in Proceedings of SPIE—The International Society for Optical Engineering, Smart Structures and Materials 1995: Passive Damping, San Diego, 1995 (Society of Photo-Optical Instrumentation Engineers, Bellingham, 1995) Vol. 2445, p. 200.Google Scholar
  5. 5.
    R. De Batist, J. de Physique (Paris), Colloque C9, 44(12) (1983) 39.Google Scholar
  6. 6.
    H. Kawabe and K. Yoshida, Bulletin of the Japan Soc. of Precision Eng. 21(2) (1987) 132.Google Scholar
  7. 7.
    Y. Sato and K. Tanaka, Res Mechanica: Int. J. of Struct. Mechanics & Mater. Sci. 23(4) (1988) 381.Google Scholar
  8. 8.
    M. Kisaichi and Y. Takahashi, Sumitomo Metals 41(2) (1989) 167.Google Scholar
  9. 9.
    D.-Y. Ju and A. Shimamoto, J. Intelligent Mater. Systems & Struct. 10(7) (2000) 514.Google Scholar
  10. 10.
    P. Shi, D. Yang, F. Chen and H. Shen, Dalian Ligong Daxue Xuebao/J. of Dalian University of Tech. 40(1) (2000) 83.Google Scholar
  11. 11.
    W. D. Armstrong and P. G. Reinhall, in Proceedings of SPIE—The International Society for Optical Engineering, Smart Structures and Materials 2000—Active Materials: Behavior and Mechanics, Newport Beach, 2000 (Society of Photo-Optical Instrumentation Engineers, Bellingham, 2000) Vol. 3992, p. 509.Google Scholar
  12. 12.
    E. I. Rivin and L. Xu, in Proceedings of the 1994 International Mechanical Engineering Congress and Exposition, Materials for Noise and Vibration Control, Chicago, 1994 (American Society of Mechanical Engineers, New York, 1994) Vol. 18, p. 35.Google Scholar
  13. 13.
    J. Van Humbeeck and Y. Liu, Mater. Sci. Forum 327 (2000) 331.Google Scholar
  14. 14.
    R. Fosdick and Y. Ketema, J. Intelligent Mater. Systems & Struct. 9(10) (1999) 854.Google Scholar
  15. 15.
    D. Z. Li and Z. C. Feng, in Proceedings of SPIE—The International Society for Optical Engineering, Smart Structures and Materials 1997: Smart Structures and Integrated Systems, San Diego, 1997 (Society of Photo-Optical Instrumentation Engineers, Bellingham, 1997) Vol. 3041, p. 715.Google Scholar
  16. 16.
    Y. Furuya, J. Intelligent Mater. Systems & Struct. 7(3) (1996) 321.Google Scholar
  17. 17.
    K.-H. Wu, S. K. Dalip, Y. Q. Liu and Z. J. Pu, in Proceedings of SPIE—The International Society for Optical Engineering, Smart Structures and Materials 1995: Smart Materials, San Diego, 1995 (Society of Photo-Optical Instrumentation Engineers, Bellingham, 1995) Vol. 2441, p. 139.Google Scholar
  18. 18.
    R. Krumme, J. Hayes and S. Sweeney, in Proceedings of SPIE—The International Society for Optical Engineering, Smart Structures and Materials 1995: Passive Damping, San Diego, 1995 (Society of Photo-Optical Instrumentation Engineers, Bellingham, 1995) Vol. 2445, p. 225.Google Scholar
  19. 19.
    A. Visnapuu, R. W. Nash and P. C. Turner, Rep Invest US Bur Mines 9068 (1987) 15.Google Scholar
  20. 20.
    Y. G. Dorofeev and N. S. Martirosyan, Soviet Powder Metallurgy & Metal Ceramics 27(2) (1988) 115.Google Scholar
  21. 21.
    H. Ona, S. Ichikawa, T. Nakako and A. Takezoi, J. Mater. Processing Tech. 23(1) (1990) 7.Google Scholar
  22. 22.
    S. Watanabe, S. Sato, I. Nakagami and S. Nagashima, Tetsu to Hagane—J. Iron & Steel Inst. Japan 77(2) (1991) 306.Google Scholar
  23. 23.
    T. Yamada, T. Takamura, S. Hashizume, T. Odake, T. Omori and K. Hattori, Nkk Tech. Rev. (65) (1992) 21.Google Scholar
  24. 24.
    M. Sato, Y. Tanaka, Y. Yutori, H. Nishikawa and M. Miyahara, SAE (Soc. of Automotive Eng.) Transactions 100(5) (1991) 309.Google Scholar
  25. 25.
    J. LU, X. Liu, W. Zheng, B. Wu and H. Bi, J. Mater. Sci. & Tech. 9(4) (1993) 293.Google Scholar
  26. 26.
    K. Aoi, J. Mech. Eng. Lab. 48(2) (1994) 58.Google Scholar
  27. 27.
    V. A. Udovenko, S. I. Tishaev and I. B. Chudakov, Izvestiya an Sssr: Metally (1) (1994) 98.Google Scholar
  28. 28.
    S.-H. Baik, Nuclear Eng. & Design 198(3) (2000) 241.Google Scholar
  29. 29.
    J.-H. Jun, D.-K. Kong and C.-S. Choi, Mater. Res. Bulletin 33(10) (1998) 1419.Google Scholar
  30. 30.
    J.-H. Jun, S.-H. Baik, Y.-K. Lee and C.-S. Choi, Scripta Materialia 39(1) (1998) 39.Google Scholar
  31. 31.
    V. G. Gavriljuk, P. G. Yakovenko and K. Ullakko, ibid. 38(6) (1998) 931.Google Scholar
  32. 32.
    W. Hermann, in Proceedings of the 1998 TMS Fall Meeting, Interstitial and Substitutional Solute Effects in Intermetallics, Rosemont, Fall 1998 (Minerals, Metals & Materials Society, Warrendale, 1998) p. 51.Google Scholar
  33. 33.
    S.-H. Baik and N.-H. Kim, in Proceedings of the 1998 ASME/JSME Joint Pressure Vessels and Piping Conference, Seismic, Shock, andVibration Isolation, San Diego, 1998 (American Society of Mechanical Engineers, Fairfield, 1998) Vol. 379, p. 149.Google Scholar
  34. 34.
    A. I. Skvortsov and V. M. Kondratov, Problemy Prochnosti (2) (1998) 2.Google Scholar
  35. 35.
    A. Karimi, P. H. Giauque and J. L. Martin, ASTM Special Tech. Pub. 1304 (1997) 115.Google Scholar
  36. 36.
    I. Aaltio and K. Ullakko, Smart Mater. & Struct. 6(5) (1997) 616.Google Scholar
  37. 37.
    K. K. Jee, W. Y. Jang, S. H. Baik, M. C. Shin and C. S. Choi, Scripta Materialia 37(7) (1997) 943.Google Scholar
  38. 38.
    A. Karimi, P. H. Giauque, J. L. Martin, G. Barbezat and A. Salito, J. de Physique IV 6(8) (1996) 779.Google Scholar
  39. 39.
    I. Aaltio, K. Ullakko and H. Hanninen, in Proceedings of SPIE – The International Society for Optical Engineering, Smart Structures and Materials 1996: Passive Damping and Isolation, San Diego, 1996 (Society of Photo-Optical Instrumentation Engineers, Bellingham, 1996) Vol. 2720, p. 378.Google Scholar
  40. 40.
    A. Karimi, P. H. Giauque and J. L. Martin, Mater. Sci. Forum 179–181 (1995) 679.Google Scholar
  41. 41.
    J. C. Roughan and D. Hearnshaw, IEE Conf. Pub. (297) 60 (1988).Google Scholar
  42. 42.
    M. Hinai, S. Sawaya and H. Masumoto, Mater. Transactions Jim 32(10) (1991) 957.Google Scholar
  43. 43.
    J. Zhang, M. N. Gungor and E. J. Lavernia, J. Mater. Sci. 28(6) (1993) 1515.Google Scholar
  44. 44.
    M. Hinai, S. Sawaya and H. Masumoto, Mater. Transactions Jim 34(4) (1993) 359.Google Scholar
  45. 45.
    K. Kondoh, M. Hashikura and Y. Takeda, J. Japan Soc. of Powder & Powder Metallurgy 46(7) (1999) 715.Google Scholar
  46. 46.
    C. Y. Xie, R. Schaller and C. Jaquerod, Mater. Sci. & Eng. A: Structural Materials, Microstructure & Processing (1) (1998) 78.Google Scholar
  47. 47.
    B.-C. Moon and Z.-H. Lee, in Proceedings of the 1997 TMS Annual Meeting, Synthesis/Processing of Lightweight Metallic Materials, Orlando, 1997 (Minerals, Metals &Materials Society, Warrendale, 1997) p. 127.Google Scholar
  48. 48.
    S. Sgobba, L. Parrini, H.-U. Kunzi and B. Ilschner, Metallurgical & Mater. Transactions A— Physical Metallurgy & Mater. Sci. 26A(10) (1995) 2745.Google Scholar
  49. 49.
    I. G. Ritchie, Z.-L. Pan and F. E. Goodwin, ibid. 22A(3) (1991) 617.Google Scholar
  50. 50.
    M. Gu, Z. Chen, Z. Wang, Y. Jin, J. Huang and G. Zhang, Scripta Metallurgica et Materialia 30(10) (1994) 1321.Google Scholar
  51. 51.
    Y. Liu, G. Yang, Y. Lu and L. Yang, J. Mater. Processing Tech. 87(1–3) (1999) 53.Google Scholar
  52. 52.
    F. E. Goodwin, Adv. Mater. & Processing 150(4) (1996) 2.Google Scholar
  53. 53.
    A. Dooris, R. S. Lakes, B. Myers and N. Stephens, Mechanics of Time-Dependent Mater. 3(4) (1999) 305.Google Scholar
  54. 54.
    Y. T. Lee and G. Welsch, Mater. Sci. & Eng. A: Structural Mater.: Properties, Microstructure & Processing 128(1) (1990) 77.Google Scholar
  55. 55.
    J. E. Grady and B. A. Lerch, SAMPE Quarterly—Society for the Advancement of Mater. & Process Eng. 23(2) (1992) 11.Google Scholar
  56. 56.
    Wolfenden, M. S. McGuff and R. U. Vaidya, J. Adv. Mater. 32(4) (2000) 60.Google Scholar
  57. 57.
    A. Wolfenden, M. W. Cantu and R. U. Vaidya, ibid. 27(3) (1996) 14.Google Scholar
  58. 58.
    P. Gadaud, A. Riviere and J. Woirgard, ASTM Special Tech. Pub. (1169) (1991) 447.Google Scholar
  59. 59.
    W. Hermann and H.-G. Sockel, ibid. (1304) (1997) 143.Google Scholar
  60. 60.
    W. Hermann, T. V. Ort and H. G. Sockel, J. de Physique IV 6(8) (1996) 223.Google Scholar
  61. 61.
    A. Wolfenden, L. M. Steinocher and L. Q. Xing, J. Mater. Sci. Lett. 19(12) (2000) 1099.Google Scholar
  62. 62.
    A. Wolfenden, K. A. Barrios and L. Q. Xing, ibid. 17(13) (1998) 1095.Google Scholar
  63. 63.
    O. G. Zotov, S. Y. Kondrat'ev, G. Y. Yaroslavskii, B. S. Chaikovskii and V. V. Matveev, Problemy Prochnosti (11) (1985) 78.Google Scholar
  64. 64.
    D. L. Hallum, American Machinist 139(5) (1995) 48.Google Scholar
  65. 65.
    Z. Trojanova, P. Lukac, S. Kraft, W. Riehemann and B. L. Mordike, Mater. Sci. Forum 210–213(2) (1996) 825.Google Scholar
  66. 66.
    R. J. Perez, J. Zhang and E. J. Lavernia, Scripta Metallurgica et Materialia 27(9) (1992) 1111.Google Scholar
  67. 67.
    J. Zhang, R. J. Perez and E. J. Lavernia, J. Mater. Sci. 28(9) (1993) 2395.Google Scholar
  68. 68.
    S. Ray, V. K. Kinra and C. Zhu, in Proceedings of the 1993 ASME Winter Annual Metting, Dynamic Characterization of Advanced Materials, New Orleans, Winter 1993 (American Society of Mechanical Engineers, New York, 1993) Vol. 16, p. 69.Google Scholar
  69. 69.
    A. Wolfenden, C. M. Miller and M. G. Hebsur, J. Mater. Sci. Lett. 17(21) (1998) 1861.Google Scholar
  70. 70.
    L. Parrini and R. Schaller, Mater. Sci. Forum 210–213(2) (1996) 627.Google Scholar
  71. 71.
    A. Wolfenden, M. Jackson and N. Martirosian, J. Mater. Sci. 31(7) (1996) 1815.Google Scholar
  72. 72.
    E. J. Lavernia, R. J. Perez and J. Zhang, Metallurgical & Mater. Transactions A-Physical Metallurgy & Mater. Sci. 26A(11) (1995) 2803.Google Scholar
  73. 73.
    E. J. Lavernia, J. Zhang and R. J. Perez, Key Eng. Mater. 104–107(2) (1995) 691.Google Scholar
  74. 74.
    N. Igata, M. Sasaki, Y. Kogo and K. Hishitani, J. de Physique IV 10(6) (2000) 113.Google Scholar
  75. 75.
    G. X. Sui, G. H. He, L. Y. Bai and B. L. Zhou, J. Mater. Sci. Lett. 14(17) (1995) 1218.Google Scholar
  76. 76.
    S. N. Ganeriwala and H. A. Hartung, in Proceedings of the ACS Division of Polymeric Materials: Science and Engineering, Dallas, Spring 1989 (ACS, Washington, DC, 1989) Vol. 60, p. 605.Google Scholar
  77. 77.
    W. Fu and D. D. L. Chung, Polymers & Polymer Composites 9(6) (2001) 423.Google Scholar
  78. 78.
    X. Luo and D. D. L. Chung, Carbon 38(10) (2000) 1510.Google Scholar
  79. 79.
    J.-S. G. Lin, C. H. Newton and J. A. Manson, in Proceedings of the 45th Annual Technical Conference—Society of Plastics Engineers, 1987 (Society of Plastics Engineers, Brookfield Center, 1987) p. 478.Google Scholar
  80. 80.
    F.-S. Liao, T.-C. Hsu and A. C. Su, J. Appl. Polym. Sci. 48(10) (1993) 1801.Google Scholar
  81. 81.
    N. Yamada, S. Shoji, H. Sasaki, A. Nagatani, K. Yamaguchi, S. Kohjiya and A. S. Hashim, ibid. 71(6) (1999) 855.Google Scholar
  82. 82.
    R. P. Chartoff, J. M. Butler, R. S. Venkatachalam and D. E. Miller, in Proceedings of the 41st Annual Technical Conference—Society of Plastics Engineers, 1983 (Society of Plastics Engineers, Brookfield Center, 1983) p. 360.Google Scholar
  83. 83.
    K. Sasaki, T. Okumoto and J. Koizumi, SAE Technical Paper Series (1990) 7.Google Scholar
  84. 84.
    C.-J. Tung and T.-C. J. Hsu, J. Appl. Polym. Sci. 46(10) (1992) 1759.Google Scholar
  85. 85.
    J. M. Pereira, in Proceedings of the 1992 ASME Winter Annual Metting, Dynamic Characterization of Advanced Materials, New Orleans,Winter 1992 (American Society of Mechanical Engineers, New York, 1992) Vol. 14, p. 51.Google Scholar
  86. 86.
    T. E. Alberts and H. Xia, J. Vibration & Acoustics— Transactions of the ASME 117(4) (1995) 398.Google Scholar
  87. 87.
    K. A. Alsweify, C. Booker, E. I. Elghandour, F. A. Kolkailah and S. H. Farghaly, in Proceedings of the 43rd International SAMPE Symposium and Exhibition, 1998 (SAMPE, Covina, 1998) Vol. 43, No. 1, p. 426.Google Scholar
  88. 88.
    S. W. Hudnut and D. D. L. Chung, Carbon 33(11) (1995) 1627.Google Scholar
  89. 89.
    M. Segiet and D. D. L. Chung, Composite Interfaces 7(4) (2000) 257.Google Scholar
  90. 90.
    C. Wang, Q. Peng, J. Liu, X. Sun, J. Zhu and Q. Cai, Acta Metallurgica Sinica (English Edition), Series A: Physical Metallurgy & Materials Science 7(2) (1994) 114.Google Scholar
  91. 91.
    X. Fu, X. Li and D. D. L. Chung, J. Mater. Sci. 33 (1998) 3601.Google Scholar
  92. 92.
    Y. Wang and D. D. L. Chung, Cem. Concr. Res. 28(10) (1998) 455.Google Scholar
  93. 93.
    Y. Xu and D. D. L. Chung, ibid. 29(7) (1999) 1107.Google Scholar
  94. 94.
    G. T. Olsen, A. Wolfenden and M. G. Hebsur, J. Mater. Eng. & Perf. 9(1) (2000) 116.Google Scholar
  95. 95.
    S. W. Parks, M.S. Project, Department of Mechanical & Aerospace Engineering, State University of New York at Buffalo, 1995.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • D. D. L. Chung
    • 1
  1. 1.Composite Materials Research Laboratory, StateUniversity of New York at BuffaloBuffaloUSA

Personalised recommendations