Brain Topography

, Volume 14, Issue 2, pp 139–147 | Cite as

Noninvasive Localization of Electromagnetic Epileptic Activity. II. Demonstration of Sublobar Accuracy in Patients with Simultaneous Surface and Depth Recordings

  • Göran Lantz
  • Rolando Grave de Peralta Menendez
  • Sara Gonzalez Andino
  • Christoph M. Michel
Article

Abstract

Seven patients with complex partial epileptic seizures undergoing invasive video/EEG-monitoring were investigated with a combination of 10 subdural strip electrode contacts (subtemporal + lateral temporal), and 22 extracranial recording sites. In each patient spikes with different intracranial distributions were identified, and for those with similar distributions the extracranial activity was averaged. A new inverse solution method called EPIFOCUS (Grave et al. 2001, this issue) was used to reconstruct the sources of both single and averaged spikes in a standard 3D-MRI, and a statistical analysis was performed in order to demonstrate location differences between spikes with different intracranial distributions. The results revealed significantly more anterior and ventral source locations for subtemporal compared to lateral temporal spikes. Within the subtemporal group, medial spikes had more mesial and dorsal locations compared to lateral ones. In the lateral temporal group, more anterior and ventral locations were obtained for anterior compared to posterior spikes. The results demonstrate the applicability of EPIFOCUS in the localization of sources in the temporal lobe with sublobar accuracy. This possibility may become important in the future, for instance in identifying cases where amygdalo-hippocampectomy or other limited temporal lobe resections may replace the standard en bloc resections.

Source reconstruction Inverse solution Epilepsy Sublobar EPIFOCUS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barth, D.S., Sutherling, W., Engel, J. and Beatty, J. Neuromagnetic localization of epileptiform spike activity in the human brain. Science, 1982, 218: 891-894.PubMedGoogle Scholar
  2. Baumgartner, C., Lidinger, G., Ebner, A., Aull, S., Serles, W., Olbrich, A., Luger, S., Czech, T., Burgess, R. and Lüders, H. Propagation of interictal epileptic activity in temporal lobe epilepsy. Neurology, 1995, 45: 118-122.PubMedGoogle Scholar
  3. Blanke, O., Lantz, G., Seeck, M., Spinelli, L., Grave de Peralta, R., Thut, G., Landis, T. and Michel, C.M. Temporal and spatial determination of EEG-seizure onset in the frequency domain. Clin. Neurophysiol., 2000, 111: 763-772.PubMedGoogle Scholar
  4. Boon, P., D'Havé, M., Adam, C., Vonck, K., Baulac, M., Vandekerckhove, T. and De Reuck, J. Dipole modeling in epilepsy surgery candidates. Epilepsia, 1996, 38: 208-218.Google Scholar
  5. Diekmann, V., Becker, W., Jürgens, R., Kleiser, B., Richter, H.P. and Wollinsky, K.H. Localisation of epileptic foci with electric, magnetic and combined electromagnetic models. Electroenceph. Clin. Neurophysiol., 1998, 106: 297-313.PubMedGoogle Scholar
  6. Ebersole, J.S. EEG dipole modeling in complex partial epilepsy. Brain Topograph., 1991, 4: 113-123.Google Scholar
  7. Ebersole, J.S. and Wade, P.B. Spike voltage topography identifies two types of frontotemporal epileptic focus. Neurology, 1991, 41: 1425-1433.PubMedGoogle Scholar
  8. Ebersole, J.S. Equivalent dipole modelling-a new EEG method for localisation of epileptogenic foci. In: T.A. Pedley and B.S. Meldrum (Eds.), Recent Advances in Epilepsy, Vol. 5, London: Churchill Livingston, 1992: 51-71.Google Scholar
  9. Ebersole, J.S. Non-invasive localization of the epileptogenic focus by EEG dipole modelling. Acta. Neurol. Scand., 1994, suppl 152: 20-28.Google Scholar
  10. Ebersole, J.S. Defining epileptogenic foci: Past Present Future. J. Clin. Neurophysiol., 1997, 14: 470-483.PubMedGoogle Scholar
  11. Fuchs, M., Wagner, M., Köhler, T. and Wischmann, H-A. Linear and nonlinear current density reconstructions. J. Clin. Neurophysiol., 1999, 16: 267-295.PubMedGoogle Scholar
  12. Gonzalez Andino, S., Michel, C.M., Lantz, G. and Grave de Peralta Menendez, R. Non stationary distributed source approximation: An alternative to improve localization procedures. Human Brain Mapping, in press.Google Scholar
  13. Grave de Peralta Menendez, R. Linear inverse solutions to the neuroelectromagnetic inverse problem. PhD thesis No 3042. Universite de Genève. 1998.Google Scholar
  14. Grave de Peralta Menendez, R. and Gonzalez Andino, S.L. A critical analysis of linear inverse solutions. IEEE Trans. Biomed. Eng., 1998, 45: 440-448.PubMedGoogle Scholar
  15. Lantz, G., Ryding, E. and Rosén, I. Three-dimensional localization of interictal epileptiform activity with dipole analysis: comparison with intracranial recordings and SPECT findings. J. Epilepsy, 1994, 7: 117-129.Google Scholar
  16. Lantz, G., Holub, M., Ryding, E. and Rosén, I. Simultaneous intracranial and extracranial recording of interictal epileptiform activity in patients with drug resistant partial epilepsy: patterns of conduction and results from dipole reconstruction. Electroenceph. Clin. Neurophysiol., 1996, 99: 69-78.Google Scholar
  17. Lantz, G., Ryding, E. and Rosén, I. Dipole reconstruction as a method for identifying patients with mesolimbic epilepsy. Seizure, 1997, 6: 303-310.PubMedGoogle Scholar
  18. Lantz, G., Michel, C.M., Pascual-Marqui, R.D., Spinelli, L., Seeck, M., Seri, S., Landis, T. and Rosén, I. Extracranial localization of intracranial interictal epileptiform activity using LORETA (Low Resolution Electromagnetic Tomography). Electroenceph. Clin. Neurophysiol., 1997, 102: 414-422.PubMedGoogle Scholar
  19. Lantz, G., Michel, C.M., Seeck, M., Blanke, O., Landis, T. and Rosén, I. Frequency domain EEG source localization of ictal epileptiform activity in patients with partial complex epilepsy of temporal lobe origin. Clin. Neurophysiol., 1999, 110: 176-184.PubMedGoogle Scholar
  20. Lantz, G., Michel, C.M., Seeck, M., Blanke, O., Thut, G., Landis, T. and Rosén, I. Characterisation of epileptiform EEG-activity during epileptic seizures, using space oriented segmentation and 3-dimensional source reconstruction. Clinical Neurophysiology, 2001, 112, 4: 687-696.Google Scholar
  21. Merlet, I., Garcia-Larrea, L., Ryvlin, P., Isnard, J., Sindou, M. and Mauguière, F. Topographical reliability of mesiotemporal sources of interictal spikes in temporal lobe epilepsy. Electroenceph. Clin. Neurophysiol., 1998, 107: 206-212.PubMedGoogle Scholar
  22. Michel, C.M., Grave de Peralta, R., Lantz, G., Gonzalez Andino, S., Spinelli, L., Blanke, O., Landis, T. and Seeck, M. Spatio-temporal EEG analysis and distributed source estimation in presurgical epilepsy evaluation. J. Clin. Neurophysiol., 1999, 16: 239-266.PubMedGoogle Scholar
  23. Mosher, J.C., Lewis, P.S. and Leahy, L. Multiple dipole modeling and localization from spatio temporal MEGdata. IEEE Trans. Biomed. Eng., 1992, 39: 541-557.CrossRefPubMedGoogle Scholar
  24. Nakasato, N., Levesque, M.P., Barth, D.S., Baumgartner, C., Rogers, R.L. and Sutherling, W.W. Comparisons of MEG, EEG, ECoG source localization in neocortical epilepsy in humans. Electroenceph. Clin. Neurophysiol., 1994, 91: 171-172.PubMedGoogle Scholar
  25. Pacia, S.V. and Ebersole, J.S. Intracranial EEG substrates of scalp ictal patterns from temporal lobe foci. Epilepsia, 1997, 38: 642-654.PubMedGoogle Scholar
  26. Pascual-Marqui, R.D., Michel, C.M. and Lehmann, D. Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int. J. Psycho-physiol., 1994, 18: 49-65.Google Scholar
  27. Scherg, M., Bast, T. and Berg, P. Multiple source analysis of interictal spikes: goals, requirements and clinical value. J. Clin. Neurophysiol., 1999, 16: 214-224.PubMedGoogle Scholar
  28. Seri, S., Cerquiglini, A., Pisani, F., Michel, C.M., Pascual-Marqui, R.D. and Curatolo, P. Frontal lobe epilepsy associated with tuberous sclerosis: EEG-MRI fusioning. J. Child Neurol., 1998, 13: 33-38.PubMedGoogle Scholar
  29. Shindo, K., Ikeda, A., Musha, T., Terada, K., Fukuyama, H., Taki, W., Kimura, J. and Shibasaki, H. Clinical usefulness of the dipole tracing method for localizing interictal spikes in partial epilepsy. Epilepsia, 1998, 39: 371-379.PubMedGoogle Scholar
  30. Spinelli, L., Gonzalez Andino, S., Lantz, G. and Michel, C.M. Co-registration of distributed electromagnetic inverse solutions with magnetic resonance images using MRI-to-sphere transformation. Brain Topogr., 2000, 2: 1-11.Google Scholar
  31. Stefan, H., Schneider, S., Feistel, H., Pawlik, G., Schuler, P., Abraham-Fuchs, K., Schlegel, T., Neubauer, U. and Huk, W.J. Ictal and interictal activity in partial epilepsy recorded with multichannel magnetoencephalography: correlation with electro-encephalography/electro-corticography, magnetic resonance imaging, single photon emission computed tomography and positron emission tomography findings. Epilepsia, 1992, 33: 874-887.PubMedGoogle Scholar
  32. Stefan, H., Schuler, P., Abraham-Fuchs, K., Schneider, S., Gebhardt, M., Neubauer, U., Hummel, C., Huk, W.J. and Thierauf, P. Magnetic source localization and morphological changes in temporal lobe epilepsies: comparison of MEG/EEG, ECoG and volumetric MRI in presurgical evaluation of operated patients. Acta. Neurol. Scand. Suppl., 1994, 152: 83-88.PubMedGoogle Scholar
  33. Wong, P.K.H. Source modelling of the rolandic focus. Brain Topography, 1991, 4: 105-112.PubMedGoogle Scholar
  34. Worrell, G.A., Lagerlund, T.D., Sharbrough, F.W., Brinkmann, B.H., Busacker, N.E., Cicora, K.M. and O'Brien, T.J. Localization of the epileptic focus by low-resolution electromagnetic tomography in patients with a lesion demonstrated by MRI. Brain Topogr. 2000, 12: 273-282.PubMedGoogle Scholar

Copyright information

© Human Sciences Press, Inc. 2001

Authors and Affiliations

  • Göran Lantz
    • 1
    • 2
  • Rolando Grave de Peralta Menendez
    • 1
  • Sara Gonzalez Andino
    • 1
  • Christoph M. Michel
    • 1
    • 2
  1. 1.Functional Brain Mapping Lab., Department of Neurology,University Hospital of Geneva,Switzerland
  2. 2.Plurifaculty Program of Cognitive Neurosciences,University of Geneva,Switzerland

Personalised recommendations