Water, Air, and Soil Pollution

, Volume 133, Issue 1–4, pp 69–96 | Cite as

Greenhouse Gas Emissions from a Hydroelectric Reservoir (Brazil’s Tucuruí Dam) and the Energy Policy Implications

  • Philip M. Fearnside

Abstract

Greenhouse gas emissions from hydroelectric dams are oftenportrayed as nonexistent by the hydropower industry, and havebeen largely ignored in global calculations of emissions fromland-use change. Brazil’s Tucuruí Dam provides an example with important lessons for policy debates on Amazonian development and on how to assess the global warming impact ofdifferent energy options. Tucuruí is better from the pointof view of power density, and hence greenhouse gas emissions per unit of electricity, than both the average for existing dams in Amazonia and the planned dams that, if all built, wouldflood 3% of Brazil’s Amazon forest. Tucuruí’s emission of greenhouse gases in 1990 is equivalent to 7.0–10.1 × 106 tons of CO2-equivalent carbon, an amount substantially greater than the fossil fuel emission of Brazil’s biggest city, São Paulo. Emissions need to beproperly weighed in decisions on dam construction. Althoughmany proposed dams in Amazonia are expected to have positivebalances as compared to fossil fuels, substantial emissionsindicated by the present study reduce the benefits often attributed to the planned dams.

Amazon Brazil carbon dioxide dams energy policy greenhouse gases hydroelectric dams methane reservoirs tropical forests 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartlett, K. B., Crill, P. M., Bonassi, J. A., Richey, J. E. and Harriss, R. C.: 1990, ‘Methane Flux from the Amazon River Floodplain: Emissions During Rising Water’, J. Geophys. Res. (Atmos.) 95(D10), 16,773–16,778.Google Scholar
  2. Brazil, ELETROBRÁS: 1987, Plano 2010: Relatório Geral. Plano Nacional de Energia Elétrica 1987/2010 (Dezembro de 1987), Centrais Elétricas do Brasil (ELETROBRÁS), Brasilia, Brazil, 269 pp.Google Scholar
  3. Brazil, ELETRONORTE: 1987, Estudos Ambientais do Reservatório de Balbina, Relatório ‘DiagnósticO' BAL-50-1001-RE, Centrais Elétricas do Norte do Brazil (ELETRONORTE), Brasilia, Brazil, 308 pp.Google Scholar
  4. Brazil, ELETRONORTE: 1988, UHE Tucuruí: Plano de Utilização do Reservatório, Caracterização e Diagnóstico do Reservatório e de sua Area de Influência, TUC-10-26346-RE, Volume I - Texto, Centrais Elétricas do Norte do Brasil (ELETRONORTE), Brasilia, Brazil, 228 pp.Google Scholar
  5. Brazil, ELETRONORTE: 1989, Usina Hidrelétrica Tucuruí: Memória Técnica, Diretoria Técnica (DT), Departamento de Projetos (TPR), Projeto Memória, Centrais Elétricas do Norte do Brasil (ELETRONORTE), Brasilia, Brazil, 681 pp.Google Scholar
  6. Brazil, ELETRONORTE: 1992, Ambiente, Desenvolvimento, Tucuruí, Centrais Elétricas do Norte do Brasil (ELETRONORTE), Brasilia, Brazil, 32 pp.Google Scholar
  7. Brazil, Programa Avaça Brasil: 1999, http://www.abrasil.gov.br.Google Scholar
  8. de Lima, I. B. T. and Novo, E. M. L. M.: 1999, ‘Carbon Flows in the Tucuruí Reservoir’, in L. P. Rosa and M. A. dos Santos (eds.), Dams and Climate Change, Coordenação dos Programas de Pós-Graduação de Engenharia (COPPE), Universidade Federal de Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil, pp. 78–84.Google Scholar
  9. de Lima, I. B. T., Novo, E. M. L. M., Ballester, M. V. R. and Ometto, J. P.: 2000, ‘The Role of Macrophyte Community in the CH4 Production and Emission in the Tropical Reservoir of Tucuruí, Pará State, Brazil’, Verh. Internat. Verein. Limnol. (in press).Google Scholar
  10. de Souza, J. A. M.: 1996, ‘Brazil and the UN Framework Convention on Climate Change’, in International Atomic Energy Agency (IAEA), Comparison of Energy Sources in Terms of their Full-Chain Emission Factors: Proceedings of an IAEA Advisory Group Meeting/Workshop held in Beijing, China, 4-7 October 1994, IAEA-TECDOC-892, IAEA, Vienna, Austria, pp. 19–21.Google Scholar
  11. Devol, A. H., Richey, J. H., Forsberg, B. R. and Martinelli, L. A.: 1990, ‘Seasonal Dynamics in Methane Emissions from the Amazon River Floodplain to the Troposphere’, J. Geophys. Res. (Atmos.) 95(D10), 16,417–16,426.Google Scholar
  12. Duchemin, E., Lucotte, M., Canuel, R. and Chamberland, A.: 1995, ‘Production of the Greenhouse Gases CH4 and CO2 by Hydroelectric Reservoirs of the Boreal Region’, Global Biogeochem. Cycles 9(4), 529–540.Google Scholar
  13. Duchemin, E., Lucotte, M., Queiroz, A. G., Canuel, R., da Silva, H. C. P., Almeida, D. C., Dezincourt, J. and Ribeiro, L. E.: 2000, ‘Greenhouse Gas Emissions from an Old Tropical Reservoir in Amazonia: Curuá-Una reservoir’, Verh. Internat. Verein. Limnol. (in press).Google Scholar
  14. Fearnside, P. M.: 1989, ‘Brazil’s Balbina Dam: Environment Versus the Legacy of the Pharaohs in Amazonia’, Environ. Manage. 13(4), 401–423.Google Scholar
  15. Fearnside, P. M.: 1995, ‘Hydroelectric Dams in the Brazilian Amazon as Sources of ‘Greenhouse’ Gases’, Environ. Conserv. 22(1), 7–19.Google Scholar
  16. Fearnside, P. M.: 1996a, ‘Hydroelectric Dams in Brazilian Amazonia: Response to Rosa, Schaeffer and dos Santos’, Environ. Conserv. 23(2), 105–108.Google Scholar
  17. Fearnside, P. M.: 1996b, ‘Amazonia and Global Warming: Annual Balance of Greenhouse Gas Emissions from Land-Use Change in Brazil’s Amazon Region’, in J. Levine (ed.), Biomass Burning and Global Change, Volume 2: Biomass Burning in South America, Southeast Asia and Temperate and Boreal Ecosystems and the Oil Fires of Kuwait, MIT Press, Cambridge, MA, U.S.A., pp. 606–617.Google Scholar
  18. Fearnside, P. M.: 1997a, ‘Greenhouse-gas Emissions from Amazonian Hydroelectric Reservoirs: The Example of Brazil’s Tucuruí Dam as Compared to Fossil Fuel Alternatives’, Environ. Conserv. 24(1), 64–75.Google Scholar
  19. Fearnside, P. M.: 1997b, ‘Greenhouse Gases from Deforestation in Brazilian Amazonia: Net Committed Emissions’, Clim. Change 35(3), 321–360.Google Scholar
  20. Fearnside, P. M.: 1999a, ‘The Potential of Brazil’s Forest Sector for Mitigating Global Warming under the Kyoto Protocol’s ‘Clean Development Mechanism’, in J. D. Kinsman, C. V. Mathai, M. Baer, E. Holt and M. Trexler (eds.), Global Climate Change: Science, Policy, and Mitigation/Adaptation Strategies: Proceedings of the Second International Specialty Conference, Washington, DC, 13-15 October 1998, Air and Waste Management Association (AWMA), Sewickley, PA, U.S.A., pp. 634–646.Google Scholar
  21. Fearnside, P. M.: 1999b, ‘Social Impacts of Brazil’s Tucuruí Dam’, Environ. Manage. 24(4), 485–495.Google Scholar
  22. Fearnside, P. M.: 2000a, ‘Why a 100-yr Time Horizon Should be Used for Global Warming Mitigation Calculations’, (manuscript).Google Scholar
  23. Fearnside, P. M.: 2000b, ‘Time Preference in Global Warming Calculations: A Proposal for a Unified Index’, (manuscript).Google Scholar
  24. Fearnside, P. M.: 2001, ‘Environmental Impacts of Brazil’s Tucuruí Dam: Unlearned Lessons for Hydroelectric Development in Amazonia’, Environ. Manage 27(3), 377–396.Google Scholar
  25. Fearnside, P. M., Lashof, D. A. and Moura-Costa, P.: 2000, ‘Accounting for Time in Mitigating Global Warming Through Land-use Change and Forestry’, Mitig. Adapt. Strateg. Global Change 5(3), 239–270.Google Scholar
  26. Fearnside, P. M., Leal Filho, N. and Fernandes, F. M.: 1993, ‘Rainforest Burning and the Global Carbon Budget: Biomass, Combustion Efficiency and Charcoal Formation in the Brazilian Amazon’, J. Geophys. Res. (Atmos.) 98(D9), 16,733–16,743.Google Scholar
  27. Galy-Lacaux, C., Delmas, R., Jambert, C., Dumestre, J.-F., Labroue, L., Richard, S. and Gosse, P.: 1997, ‘Gaseous Emissions and Oxygen Consumption in Hydroelectric Dams: A Case Study in French Guyana’, Global Biogeochem. Cycles 11(4), 471–483.Google Scholar
  28. Galy-Lacaux, C., Delmas, R., Kouadio, J., Richard, S. and Gosse, P.: 1999, ‘Long-term Greenhouse Gas Emissions from Hydroelectric Reservoirs in Tropical Forest Regions’, Global Biogeochem. Cycles 13(2), 503–517.Google Scholar
  29. Gosse, P.: 1999, ‘A System for Reoxygenating the Water at Petit-Saut’, http://www.edf.fr/der/html/der/environnement/ptiso.en.htm.Google Scholar
  30. Grace, J., Lloyd, J., McIntyre, J., Miranda, A. C., Meir, P., Miranda, H. S., Nobre, C., Moncrieff, J., Massheder, J., Malhi, Y., Wright, I. and Gash, J.: 1995, ‘Carbon Dioxide Uptake by an Undisturbed Tropical Rain Forest in Southwest Amazonia, 1992 to 1993’, Science 270, 778–780.Google Scholar
  31. Junk, W. J., Robertson, B. A., Darwich, A. J. and Vieira, I.: 1981, ‘Investigações limnológicas e ictiológicas em Curuá-Una, a primeira represa hidrelétrica na Amazônia Central’, Acta Amazonica 11(4), 689–716.Google Scholar
  32. Keller, M., Kaplan, W. A. and Wofsy, S. C.: 1986, ‘Emissions of N2O, CH4 and CO2 from tropical forest soils’, J. Geophys. Res. (Atmos.) 91, 11,791–11,802.Google Scholar
  33. Keller, M. and Stallard, R. F.: 1994, ‘Methane Emission by Bubbling from Gatun Lake, Panama’, J. Geophys. Res. (Atmos.) 99(D4), 8307–8319.Google Scholar
  34. La Rovere, E. L.: 1996, ‘The Prevention of Global Climate Changes and Sustainable Energy Development in Brazil’, in L. P. Rosa and M. A. dos Santos (eds.), Greenhouse Gas Emissions under a Developing Countries Point of View, Coordenação dos Programs de Pós-Graduação de Engenharia (COPPE), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil, pp. 215–225.Google Scholar
  35. Leentvaar, P.: 1966, ‘The Brokopondo Lake in Suriname’, Verh. Internat. Verein. Limnol. 16, 680–684.Google Scholar
  36. Malhi, Y., Nobre, A. D., Grace, J., Kruijt, B., Pereira, M. G. P., Culf, A. and Scott, S.: 1998, ‘Carbon Dioxide Transfer over a Central Amazonian Rain Forest’, J. Geophys. Res. (Atmos.) 103(D24), 31,593–31,612.Google Scholar
  37. Martius, C., Fearnside, P. M., Bandeira, A. G. and Wassmann, R.: 1996, ‘Deforestation and Methane Release from Termites in Amazonia’, Chemosphere 33(3), 517–536.Google Scholar
  38. Matvienko, B., Rosa, L. P., Sikar, E., dos Santos, M. A., Menezes, F. and Lourenço, R.: 2000, ‘Carbon Dioxide and Methane Emission from Some Brazilian Reservoirs’, Paper presented at the World Commission on Dams Workshop on Greenhouse Gas Emissions from Reservoirs, Montreal, Canada, 24-25 February 2000, 8 pp.Google Scholar
  39. Matvienko, B. and Tundisi, J. G.: 1996, ‘Biogenic Gas Release by Reservoirs in the Amazon’, Report to Centrais Elétricas do Brasil (ELETROBRÁS), Rio de Janeiro, Brazil, 11 pp.Google Scholar
  40. Matvienko, B. and Tundisi, J. G.: 1997, ‘Biogenic Gases and Decay of Organic Matter’, in L. P. Rosa and M. A. dos Santos (eds.), Hydropower Plants and Greenhouse Gas Emissions, Coordenação dos Programas de Pós-Graduação em Engenharia (COPPE), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil, pp. 34–40.Google Scholar
  41. Novo, E. L. M. and Tundisi, J. G.: 1994, ‘Contribution of Remote Sensing Techniques to the Assessment of Methane Emission from Large Tropical Reservoirs’, Remote Sensing Reviews 10, 143–153.Google Scholar
  42. Polunin, N. V. C.: 1984, ‘The Decomposition of Emergent Macrophytes in Fresh Water’, Advan. Ecological Res. 14, 115–168.Google Scholar
  43. Revilla Cardenas, J. D., Kahn, F. L. and Guillamet, J. L.: 1982, ‘Estimativa da fitomassa do reservatório da UHE de Tucuruí’ in Projeto Tucuruí, Relatório Semestral, Período janeiro/junho 1982, Vol. 2: Limnologia, Macrófitas, Fitomassa, Degradação da Fitomassa, Doenças Endêmicas, Solos, Centrais Elétricas do Norte do Brasil (ELETRONORTE) and Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brazil, pp. 1–11.Google Scholar
  44. Rosa, L. P., dos Santos, M. A., Tundisi, J. G. and Sikar, B. M.: 1997a, ‘Measurements of Greenhouse Gas Emissions in Samuel, Tucuruí and Balbina Dams’, in L. P. Rosa and M. A. dos Santos (eds.), Hydropower Plants and Greenhouse Gas Emissions, Coordenação dos Programas de Pós-Graduação em Engenharia (COPPE), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil, pp. 41–55.Google Scholar
  45. Rosa, L. P. and Schaeffer, R.: 1995, ‘Global Warming Potentials: The Case of Emissions from Dams’, Energy Policy 23, 149–158.Google Scholar
  46. Rosa, L. P., Schaeffer, R. and dos Santos, M. A.: 1996a, ‘Are Hydroelectric Dams in the Brazilian Amazon Significant Sources of ‘Greenhouse’ Gases?, Environ. Conserv. 23(2), 2–6.Google Scholar
  47. Rosa, L. P., Schaeffer, R. and dos Santos, M. A.: 1996b. A Model of Greenhouse Gas Emissions from Hydroelectric Plants and an Application to Dams in the Amazon Region of Brazil, Coordenação dos Programas de Pós-Graduação de Engenharia (COPPE), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil, 17 pp.Google Scholar
  48. Rosa, L. P., Schaeffer, R. and dos Santos, M. A.: 1996c, Emissões de metano e dióxido de carbono de hidrelétricas na Amazônia comparadas às termelétricas equivalentes. Cadernos de Energia 9, 109–157.Google Scholar
  49. Rosa, L. P., Sikar, B. M., Sikar, E. M. and dos Santos, M. A.: 1997b, ‘A Model for CH4 and CO2 Emission Mean Life in Reservoir Based on Data from an Amazonian Hydroplant’, in L. P. Rosa and M. A. dos Santos (eds.), Hydropower Plants and Greenhouse Gas Emissions, Coordenação dos Programas de Pós-Graduação em Engenharia (COPPE), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil, pp. 102–111.Google Scholar
  50. Schimel, D. and 75 others: 1996, ‘Radiative Forcing of Climate Change’, in J. T. Houghton, L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg and K. Maskell (eds.), Climate Change 1995: The Science of Climate Change, Cambridge University Press, Cambridge, pp. 65–131.Google Scholar
  51. Sissakian, C. and Desmoulins, G.: 1991, ‘Impacts des retenues en site tropical: Actions entreprises a l’occasion de la réalisation du barrage de Petit-Saut en Guyane Française’, in Seventeenth Congress on Large Dams, Vienna, 1991, International Commission on Large Dams (ICOLD), Paris, France, Q. 64, R. 1, pp. 1–18.Google Scholar
  52. Tian, H., Mellilo, J. M., Kicklighter, D. W., McGuire, A. D., Helfrich III, J. V. K., Moore III, B. and Vörösmarty, C.: 1998, ‘Effect of Interannual Climate Variability on Carbon Storage in Amazonian Ecosystems’, Nature 396, 664–667.Google Scholar
  53. Verchot, L. V., Davidson, E. A., Cattânio, J. H., Akerman, I. L., Erickson, H. E. and Keller, M.: 1999, ‘Land Use Change and Biogeochemical Controls of Nitrogen Oxide Emissions from Soils in Eastern Amazonia’, Global Biogeochem. Cycles 13(1), 31–46.Google Scholar
  54. Vilarrubia, T. V. and Cova, M.: 1993, ‘Estudio sobre la distribución y ecologia de macrófitos aquáticos en el embalse de Guri’, Interciencia 18(2), 77–82.Google Scholar
  55. Walker, I., Miyai, R. and de Melo, M. D. A.: 1999, ‘Observations on Aquatic Macrophyte Dynamics in the Reservoir of the Balbina Hydroelectric Power Plant, Amazonas State, Brazil’, Acta Amazonica 29(2), 243–265.Google Scholar
  56. Wassmann, R. and Thein, U. G.: 1989, ‘Spatial and Seasonal Variation of Methane Emission from an Amazon Floodplain Lake’, Paper presented at the Workshop on ‘Cycling of Reduced Gases in the Hydrosphere’, SIL Congress, Munich, Germany, 17 August 1989, (manuscript).Google Scholar
  57. WCD (World Commission on Dams): 1999, ‘World Commission on Dams to study Brazil’s Tucuruí Dam and Amazon/Tocantins River Basin’, http://www.dams.org.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Philip M. Fearnside
    • 1
  1. 1.Department of EcologyNational Institute for Research in the Amazon (INPA)Manaus, AmazonasBrazil

Personalised recommendations