Surveys in Geophysics

, Volume 22, Issue 2, pp 155–174

Antarctica's role in understanding long-term change in the upper atmosphere

  • Martin J. Jarvis
Article
  • 43 Downloads

Abstract

Within the global context, Antarctica has a key role to play in understanding long-term change in the upper atmosphere, both because of its isolation from the rest of the world and because of its unique geophysical attributes. Antarctic upper atmosphere data can provide global change observations regarding the mesosphere, thermosphere, ionosphere, plasmasphere and magnetosphere. It will not only provide trend estimates but, just as importantly, it will define the background variability which exists in the upper atmosphere and against which these trends must be resolved. Upper atmospheric change can be driven both from within the Earth's near environment primarily through changing atmospheric composition, dynamics or geomagnetic field, or it can be driven externally, predominantly by the Sun. Recent observations are discussed in the light of increasing interest in global change issues and sun-weather relationships.

Antarctica global change mesosphere thermosphere ionosphere plasmasphere 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuwalia, H.S.: (2000), On galactic cosmic ray flux decrease near solar minima and IMF intensity, Geophys. Res. Lett. 27, 1603–1606.Google Scholar
  2. Aikin A.C., Chanin, M.-L., Nash, J. and Kendig, D.J.: (1991), Temperature trends in the lower mesosphere, Geophys. Res. Lett. 18, 416–419.Google Scholar
  3. Arnold, N.F. and Robinson, T.R.: (1998), Solar cycle changes to planetary wave propagation and their influence on the middle atmosphere circulation, Ann. Geophysicae 16, 69–76.Google Scholar
  4. Beer J., Blinov, A., Bonani, G., Finkel, R.C., Hofmann, H.J., Lehmann, B., Oeschger, H., Sigg, A., Schwander, J., Staffelbach, T., Stauffer, B., Suter, M. and Wolfli, W.: (1990), Use of 10Be in polar ice to trace the 11-year cycle of solar activity, Nature 347, 164–347.Google Scholar
  5. Bremer, J.: (1992), Ionospheric trends in mid-latitudes as a possible indicator of the atmospheric greenhouse effect, J. Atmos. Terr. Phys. 54, 1505–1511.Google Scholar
  6. Bremer, J.: (1998), Trends in the ionospheric E and F regions over Europe. Ann. Geophysicae 16, 986–996.Google Scholar
  7. Carpenter, D.L.: (1962), New experimental evidence of the effect of magnetic storms on the magnetosphere, J. Geophys. Res. 76, 135–145.Google Scholar
  8. Clilverd M.A., Clark, T.D.G., Clarke, E., Rishbeth, H.: (1998), Increased magnetic storm activity from 1868 to 1995, J. Atmos. Sol.-Terr. Phys. 60, 1047–1056.Google Scholar
  9. Clilverd M.A., Jenkins, B. and Thomson, N.B.: (2000a), Plasmaspheric storm time erosion, J. Geophys. Res. 105, 2997–13008.Google Scholar
  10. Clilverd M.A., Taylor, M.J., Jarvis, M.J., Espy, P. and Rose, M.C.: (2000b), Studying mesospheric dynamics in the Antarctic using the upgraded instrument cluster at Halley. In First S-RAMP Conference, Sapporo, Japan, p328.Google Scholar
  11. Cliver, E.W., Boriakoff, V. and Feynman, J.: (1998), Solar variability and climate change: Geomagnetic aa index and global surface temperature. Geophys. Res. Lett. 25, 1035–1038.Google Scholar
  12. Crowley, G., Ridley, A., Winningham, D., Frahm, R., Scharber, J. and Russell III, J.: (1999), On the hemispheric symmetry in thermsopheric nitric oxide, Geophys. Res. Lett. 26, 1545–1548.Google Scholar
  13. Danilov, A.D. and Mikhailov, A.V.: (2001), F2-layer parameters long-term trends at the Argentine Islands and Port Stanley stations, Ann. Geophysicae 19, 341–349.Google Scholar
  14. Dreschhoff, G. and Zeller, E.J.: (1998), Ultra-high resolution nitrate in polar ice as indicator of past solar activity, Solar Physics 177, 365–374.Google Scholar
  15. Ejiri M., Aso, T., Okada, M., Tsutsumi, M., Taguchi, M., Sato, N. and Okano, S.: (1999), Japanese research project on Arctic and Antarctic observations of the middle atmosphere, Adv. Space Res. 24(12), 1689–1692.Google Scholar
  16. Feynman, J. and Ruzmaikin, A.: (1999), Modulation of cosmic ray precipitation related to climate, Geophys. Res. Lett. 26, 2057–2060.Google Scholar
  17. Field, P.R. and Rishbeth, H.: (1997), The response of the ionospheric F2-layer to geomagnetic activity: an analysis of worldwide data, J. Atmos. Sol.-Terr. Phys. 59, 163–180.Google Scholar
  18. Fogle, B. and Haurwitz, B.: (1966), Noctilucent clouds, Space Sci. Rev. 6, 279–340.Google Scholar
  19. Forbush S.E.: (1937), On the effects in cosmic ray intensity observed during the recent magnetic storm, Phys. Rev. 51, 1108–1109.Google Scholar
  20. Gadsden, M.: (1990), A secular change in noctilucent cloud occurrence, J. Atmos. Terr. Phys. 52, 247–251.Google Scholar
  21. Goldberg, R.A.: (1979), An experimental search for causal mechanisms in Sun/weather-climatic relationships, in B.M. McCorinac and T.A. Seliga (eds.), Solar-terrestrial Influences on Weather and Climate, D. Reidel, The Netherlands, pp. 161–174.Google Scholar
  22. Golitsyn, G.S., Seminov, A.I., Shefov, N.N., Fishkova, L.M., Lysenko, E.V. and Perov, S.P.: (1996), Long-term temperature trends in the middle and upper atmosphere, Geophys. Res. Lett. 23, 1741–1744.Google Scholar
  23. Greenwald, R.A., Baker, K.B., Dudeney, J.R., Pinnock, M., Jones, T.B., Thomas, E.C., Villain, J.P., Cerisier, J.C., Senior, C., Hanuise, C., Hunsucker, R.D., Sofko, G., Koehler, J., Nielson, E. Pellinen, R., Walker, A.D.M., Sato, N. and Yamagishi, H.: (1995), DARN/SuperDARN: a global view of the dynamics of high-latitude convection, Space Sci. Rev. 71, 761–793.Google Scholar
  24. Griffiths, L.A. and Shanklin, J.D.: (1987), An observation of noctilucent cloud in Antarctic winter, Weather 42, 391.Google Scholar
  25. Hauchecorne, A., Chanin, M.-L. and Keckhut, P.: (1991), Climatology and trends in the middle atmosphere temperature (33–87 km) as seen by Rayleigh lidar over France, J. Geophys. Res. 96, 15297–15309.Google Scholar
  26. Hines, C.O. and Halevy, I.: (1977), On the reality and nature of a certain Sun-weather correlation, J. Atmos. Sci. 34, 382–404.Google Scholar
  27. Huaman, M.M. and Balsley, B.B.: (1999), Differences in near-mesopause summer winds, temperatures, and water vapor at northern and southern latitudes as possible causal factors for inter-hemispheric PMSE differences, Geophys. Res. Lett. 26, 1529–1532.Google Scholar
  28. Jackman C.H., Fleming, E.L. and Vitt, F.M.: (2000), Influence of extremely large solar proton events in a changing stratosphere, J. Geophys. Res. 105, 11659–11670.Google Scholar
  29. Jarvis M.J., Jenkins, B. and Rodgers, G.A.: (1998), Southern hemisphere observations of a longterm decrease in F-region altitude and thermospheric wind providing possible evidence for global thermospheric cooling, J. Geophys. Res. 103, 20774–20787.Google Scholar
  30. Jenkins, B., Jarvis, M.J. and Forbes, D.M.: (1998), Mesospheric wind observations derived from Super Dual Auroral Radar Network (SuperDARN) HF radar meteor echoes at Halley, Antarctica: Preliminary results, Radio Sci. 33, 957–965.Google Scholar
  31. Jorgansen, T.S. and Hansen, A.W.: (2000), Comments on 'Variation of cosmic ray flux and global cloud coverage – a missing link in solar terrestrial relationships', J. Atmos. Sol.-Terr. Phys. 62, 73–77.Google Scholar
  32. Kattenberg, A., Giorgi, F., Grassi, H., Meehl, G.A., Mitchell, J.F.B., Stouffer, R.J., Tokioka, T., Weaver, A.J. and Wigley, T.M.L.: (1996), Climate models – projections of future climate, in J.T. Houghton, L.C.M. Filho, B.A. Callander, N. Harris, A. Kattenberg and K. Maskell (eds.), Climate Change 1995: The Science of Climate Change, Cambridge University Press, Cambridge, U.K., pp. 285–357.Google Scholar
  33. Keating, G. and Bougher, S.W.: (1992), Isolation of major Venus cooling mechanism and implications for Earth and Mars, J. Geophys. Res. 97, 4189–4197.Google Scholar
  34. Keating, G.M., Tolson, R.H. and Bradford, M.S.: (2000), Evidence of long term global decline in the Earth's thermospheric densities apparently related to anthropogenic effects, Geophys. Res. Lett. 27, 1523–1526.Google Scholar
  35. Keckhut P., Schmidlin, F.J., Hauchecorne, A. and Chanin, M.-L.: (1999), Stratospheric and mesospheric cooling trend estimates from US rocketsondes at low latitude stations (8°S–34°N), taking into account instrumental changes and natural variability, J. Atmos. Sol.-Terr. Phys. 61, 447–459.Google Scholar
  36. Lockwood M., Stamper, R. and Wild, M.N.: (1999), A doubling of the Sun's coronal magnetic field during the past 100 years, Nature 399, 437–439.Google Scholar
  37. Lübken, F.-J.: (1999), Thermal structure of the Arctic summer mesosphere, J. Geophys. Res. 104, 9135–9149.Google Scholar
  38. Lübken, F.-J.: (2000), Nearly zero temperature trend in the polar summer mesosphere, Geophys. Res. Lett. 27, 3603–3606.Google Scholar
  39. Lübken F.-J. and Von Zahn, U.: (1991), Thermal structure of the mesopause region at polar latitudes, J. Geophys. Res. 96, 20841–20857.Google Scholar
  40. Lübken, F.-J., Fricke, K.H., Langer, M.: (1996), Noctilucent clouds and the thermal structure near the Arctic mesopause in summer, J. Geophys. Res. 101, 9489–9508.Google Scholar
  41. Lübken, F.-J., Jarvis, M.J. and Jones, G.O.L.: (1999), First in situ temperature measurements at the Antarctic summer mesopause, Geophys. Res. Lett. 26, 3581–3584.Google Scholar
  42. Mikhailov, A.V. and Marin, D.: (2000), Geomagnetic control of foF2 trends, Ann. Geophysicae 18, 653–665.Google Scholar
  43. Olivero J.J. and Thomas, G.E.: (1986), Climatology of polar mesospheric clouds, J. Atmos. Sci. 43, 1263–1274.Google Scholar
  44. Rishbeth H.: (1990), A greenhouse effect in the ionosphere? Planet. Space Sci. 38, 945–948.Google Scholar
  45. Roble, R.G. and Dickinson, R.E.: (1989), How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere? Geophys. Res. Lett. 16, 1441–1444.Google Scholar
  46. Shanklin, J.D.: (1988), Reply, Weather 43, 368; 43, 380.Google Scholar
  47. Shea, M.A., Smart, D.F. and Dreschhoff, G.A.M.: (1999), Identification of major proton fluence events from nitrates in polar ice cores, Radiation Measurements 30, 309–316.Google Scholar
  48. Smart D.F. and Shea, M.A.: (1985), Galactic cosmic radiation and solar energetic particles, in A. Jursa (ed.), Handbook of Geophysics and Space Environment, Air Force Geophys. Lab., Bedford, MA.Google Scholar
  49. Stozhkov, Y.I., Pokrevsky, P.E. and Okhlopkov, V.P.: (2000), Long term negative trend in cosmic ray flux, J. Geophys. Res. 105, 9–17.Google Scholar
  50. Svensmark H. and FriisChristensen, E.: (1997), Variation of cosmic ray flux and global cloud coverage – a missing link in solar-climate relationships, J. Atmos. Terr. Phys. 59, 1225–1232.Google Scholar
  51. Taubenheim, J., Entzian, G. and Berendorf, K.: (1997), Long-term decrease of mesospheric temperature, 1963–1995, inferred from radiowave reflection heights, Adv. Space Res. 20(11), 2059–2063.Google Scholar
  52. Thomas, G.: (1996), Global change in the mesosphere-lower thermosphere region: has it already arrived? J. Atmos. Terr. Phys. 58(14), 1629–1656.Google Scholar
  53. Tinsley, B.A. and Deen, G.W.: (1991), Apparent response to MeV–GeV particle-flux variations – a connection via electrofreezing of supercooled water in high-level clouds, J. Geophys. Res. 96, 22283–22296.Google Scholar
  54. Ulich, T. and Turunen, E.: (1997), Evidence for long-term cooling of the upper atmosphere in ionosonde data, Geophys. Res. Lett. 24, 1103–1106.Google Scholar
  55. Veretenenko, S.V. and Pudovkin, M.I.: (1994), Effects of Forbush decrease of galactic cosmic rays in variation of general cloudiness, Geomagnetizm I Aeronomiya 34, 38–44.Google Scholar
  56. Warren, S.G., Thomas, G.E., Hernandez, G. and Smith, R.W.: (1997), Noctilucent cloud observed in late April at South Pole Station: temperature anomaly or meteoritic dust? J. Geophys. Res. 102, 1991–2000.Google Scholar
  57. Willson R.C., Hudson, H.S., Frohlich, C. and Brusa, R.W.: (1986), Long-term downward trend in total solar irradiance, Science 234, 1114–1117.Google Scholar
  58. Wilcox, J.M., Scherrer, P.H., Svalgaard, L., Roberts, W.O. and Olson, R.H.: (1973), Solar magnetic structure: influence on stratospheric circulation, Science 180, 185–186.Google Scholar
  59. Woodman, R.F., Balsley, B.B., Aquino, F., Flores, L., Vazqez, E., Sarango, M., Huaman. M.M. and Soldi, H.: (1999), First observations of polar mesospheric summer echoes in Antarctica, J. Geophys. Res. 104, 22577–22590.Google Scholar
  60. Yoshiki M. and Sato, K.: (2000), A statistical study of gravity waves in the polar regions based on radiosonde data, J. Geophys. Res. 105, 17995–18011.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Martin J. Jarvis
    • 1
  1. 1.British Antarctic SurveyCambridgeU.K.

Personalised recommendations