International Journal of Theoretical Physics

, Volume 40, Issue 12, pp 2231–2258 | Cite as

Interacting Field Theories in Robertson-Walker Spacetimes: Analytic Approximations

  • Carmen Molina-París
  • Paul R. Anderson
  • Stephen A. Ramsey
Article

Abstract

The renormalization of a scalar field theory with a quartic self-coupling via adiabatic regularization in a Robertson-Walker spacetime is discussed. The adiabatic counterterms are presented in a way that is most conducive to numerical computations. A variation of the adiabatic regularization method is presented which leads to analytic approximations for the energy–momentum tensor of the quantum field and the quantum contribution to the effective mass of the mean field. Conservation of the energy–momentum tensor for the field is discussed and it is shown that the part of the energy–momentum tensor which depends only on the mean field is not conserved but the full renormalized energy–momentum tensor is conserved, as expected and required by the semiclassical Einstein's equation. It is also shown that if the analytic approximations are used the resulting approximate energy–momentum tensor is conserved. This allows a self-consistent backreaction calculation to be performed using the analytic approximations. The usefulness of the approximations is discussed.

REFERENCES

  1. Anderson, P. R. (1985). Physical Review D 32, 1302.Google Scholar
  2. Anderson, P. R. (1986). Physical Review D 33, 1567.Google Scholar
  3. Anderson, P. R. and Eaker, W. (2000). Physical Review D 61, 024003.Google Scholar
  4. Anderson, P. R. and Parker, L. (1987). Physical Review D 36, 2963.Google Scholar
  5. Birrell, N. D. (1978). Proceedings of the Royal Society of London B 361, 513.Google Scholar
  6. Birrell, N. D. (1980). Journal of Physics A: Mathematical and General 13, 569.Google Scholar
  7. Birrell, N. D. and Davies, P. C. W. (1982). Quantum Fields in Curved Space, Cambridge University Press, England, and references contained therein.Google Scholar
  8. Birrell, N. D. and Ford, L. H. (1979). Annals of Physics (New York) 122, 1.Google Scholar
  9. Birrell, N. D. and Ford, L. H. (1980). Physical Review D 22, 330.Google Scholar
  10. Boyanovsky, D., Cormier, D., de Vega, H. J., Holman, R., Singh, A., and Srednicki, M. (n.d.). hepph/9609527.Google Scholar
  11. Boyanovsky, D., de Vega, H. J., Holman, R., Lee, D.-S., and Singh, A. (1995). Physical Review D 52, 6805.Google Scholar
  12. Boyanovsky, D., Holman, R., and Prem Kumar, S. (1997). Physical Review D 56, 1958.Google Scholar
  13. Bunch, T. S. (1980). Journal of Physics A: Mathematical and General 13, 1297.Google Scholar
  14. Bunch, T. S. and Panangaden, P. (1980). Journal of Physics A: Mathematical and General 13, 919.Google Scholar
  15. Bunch, T. S., Panangaden, P., and Parker, L. (1980). Journal of Physics A: Mathematical and General 13, 901.Google Scholar
  16. Bunch, T. S. and Parker, L. (1980). Physical Review D 20, 2499.Google Scholar
  17. Christensen, S. M. (1976). Physical Review D 14, 2490.Google Scholar
  18. Christensen, S. M. (1978). Physical Review D 17, 946.Google Scholar
  19. Cognola, G. (1994). Physical Review D 50, 909.Google Scholar
  20. Collins, J. C. (1974). Physical Review D 10, 1213.Google Scholar
  21. Cooper, F., Kluger, Y., Mottola, E., and Paz, J. P. (1995). Physical Review D 51, 2377.Google Scholar
  22. Drummond, I. T. (1975). Nuclear Physics B 94, 115.Google Scholar
  23. Ford, L. H. and Toms, D. J. (1982). Physical Review D 25, 1510.Google Scholar
  24. Fulling, S. A. and Parker, L. (1974). Annals of Physics (New York) 87, 176.Google Scholar
  25. Fulling, S. A., Parker, L., and Hu, B. L. (1974). Physical Review D 10, 3905.Google Scholar
  26. Ghika, G. and Visinescu, M. (1978). Nuovo Cimento 46A, 25.Google Scholar
  27. Hu, B. L. (1983). Physics Letters B 123, 189, and references contained therein.Google Scholar
  28. Jackiw, R. and Kerman, A. (1979). Physics Letters A 71, 158.Google Scholar
  29. Lampert, M. A., Daswon, J. F., and Cooper, F. (1996). Physical Review D 54, 2213, and references contained therein.Google Scholar
  30. Lampert, M. A. and Molina-París, C. (1998). Physical Review D 57, 83.Google Scholar
  31. Lindelof, E. (1905). Le calcul des Residus, Gautier-Villars, Paris.Google Scholar
  32. Mazzitelli, F. D. and Paz, J. P. (1989). Physical Review D 39, 2234.Google Scholar
  33. Mazzitelli, F. D., Paz, J. P., and Hasi, C. El (1989). Physical Review D 40, 995.Google Scholar
  34. Molina-París, C., Anderson, R., and Ramsey, S. A. (2000). Physical Review D 61, 127501.Google Scholar
  35. Parker, L. (1966). PhD Thesis, Harvard University, Xerox University Microfilms, Ann Arbor, Michigan, No. 73-31244 and App. CI., pp. 140–171.Google Scholar
  36. Parker, L. and Fulling, S. A. (1974). Physical Review D 9, 341.Google Scholar
  37. Paz, J. P. and Mazzitelli, F. D. (1988). Physical Review D 37, 2170.Google Scholar
  38. Ramsey,S. A. and Hu, B. L. (1997a). Physical Review D 56, 661.Google Scholar
  39. Ramsey, S. A. and Hu, B. L. (1997b). Physical Review D 56, 678.Google Scholar
  40. Ringwald, A. (1987). Annals of Physics (New York) 177, 129, Physical Review D 36 (1987), 2598.Google Scholar
  41. Shen, T. C., Hu, B. L., and O'Connor, D. J. (1985). Physical Review D 31, 2401.Google Scholar
  42. Stevenson, P. (1985). Physical Review D 32, 1389.Google Scholar
  43. Suen, W. M. and Anderson, P. R. (1987). Physical Review D 35, 2940.Google Scholar
  44. Whittaker, E. T. and Watson, G. N. (1927). A Course of Modern Analysis, Cambridge University Press, London, Exercise 7, p. 145.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Carmen Molina-París
    • 1
    • 2
  • Paul R. Anderson
    • 1
  • Stephen A. Ramsey
    • 3
  1. 1.Theoretical Division T-8Los Alamos National LaboratoryLos AlamosNew Mexico
  2. 2.Centro de AstrobiologíaCSIC/INTATorrejón de Ardoz, MadridSpain
  3. 3.Genome CenterUniversity of WashingtonSeattle

Personalised recommendations