Advertisement

Mathematical Physics, Analysis and Geometry

, Volume 4, Issue 3, pp 245–291 | Cite as

Inverse Problem and Monodromy Data for Three-Dimensional Frobenius Manifolds

  • Davide Guzzetti
Article

Abstract

We study the inverse problem for semi-simple Frobenius manifolds of dimension 3 and we explicitly compute a parametric form of the solutions of the WDVV equations in terms of Painlevé VI transcendents. We show that the solutions are labeled by a set of monodromy data. We use our parametric form to explicitly construct polynomial and algebraic solutions and to derive the generating function of Gromov–Witten invariants of the quantum cohomology of the two-dimensional projective space. The procedure is a relevant application of the theory of isomonodromic deformations.

WDVV equation Frobenius manifold isomonodromic deformation Painlevé equation monodromy boundary-value problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anosov, D. V. and Bolibruch, A. A.: The Riemann-Hilbert Problem, Publ. Steklov Institute Math., 1994.Google Scholar
  2. 2.
    Balser, W., Jurkat, W. B. and Lutz, D. A.: Birkhoff invariants and Stokes' multipliers for meromorphic linear differential equations, J. Math. Anal. Appl. 71 (1979), 48–94.Google Scholar
  3. 3.
    Balser, W., Jurkat, W. B. and Lutz, D. A.: On the reduction of connection problems for differential equations with an irregular singular point to ones with only regular singularities, SIAM J. Math. Anal. 12 (1981), 691–721.Google Scholar
  4. 4.
    Bertola, M.: Jacobi groups, Hurwitz spaces and Frobenius structures, Preprint SISSA 74/98/FM, 1998, to appear in Differential Geom. Appl. Google Scholar
  5. 5.
    Birman, J. S.: Braids, Links, and Mapping Class Groups, Ann. Math. Stud. 82, Princeton Univ. Press, 1975.Google Scholar
  6. 6.
    Coxeter, H. S. M.: Regular Polytopes, Dover, New York, 1963.Google Scholar
  7. 7.
    Di Francesco, P. and Itzykson, C.: Quantum intersection rings, In: R. Dijkgraaf, C. Faber and G. B. M. van der Geer (eds), The Moduli Space of Curves, 1995.Google Scholar
  8. 8.
    Dijkgraaf, R., Verlinde, E. and Verlinde, H.: Topological strings in d < 1, Nuclear Phys. B 352 (1991), 59–86.Google Scholar
  9. 9.
    Dubrovin, B.: Integrable systems in topological field theory, Nuclear Phys. B 379 (1992), 627–689.Google Scholar
  10. 10.
    Dubrovin, B.: Geometry and itegrability of topological-antitopological fusion, Comm. Math. Phys. 152 (1993), 539–564.Google Scholar
  11. 11.
    Dubrovin, B.: Geometry of 2D topological field theories, In: Lecture Notes in Math. 1620, Springer, New York, 1996, pp. 120–348.Google Scholar
  12. 12.
    Dubrovin, B.: Painlevé trascendents in two-dimensional topological field theory, In: R. Conte (ed.), The Painlevé Property, One Century Later, Springer, New York, 1999.Google Scholar
  13. 13.
    Dubrovin, B.: Geometry and analytic theory of Frobenius manifolds, math.AG/9807034, 1998.Google Scholar
  14. 14.
    Dubrovin, B.: Differential geometry on the space of orbits of a Coxeter group, math.AG/9807034, 1998.Google Scholar
  15. 15.
    Dubrovin, B. and Mazzocco, M.: Monodromy of certain Painlevé-VI trascendents and reflection groups, Invent. Math. 141 (2000), 55–147.Google Scholar
  16. 16.
    Gambier, B.: Sur des équations differentielles du second ordre et du premier degré dont l'intégrale est à points critiques fixes, Acta Math. 33 (1910), 1–55.Google Scholar
  17. 17.
    Guzzetti, D: Stokes matrices and monodromy for the quantum cohomology of projective spaces, Comm. Math. Phys. 207 (1999), 341–383. Also see the preprint math/9904099.Google Scholar
  18. 18.
    Its, A. R. and Novokshenov, V. Y.: The Isomonodromic Deformation Method in the Theory of Painleve Equations, Lecture Notes in Math. 1191, Springer, New York, 1986.Google Scholar
  19. 19.
    Iwasaki, K., Kimura, H., Shimomura, S. and Yoshida, M.: From Gauss to Painlevé, Aspects Math. 16, Vieweg, Braunschweig, 1991.Google Scholar
  20. 20.
    Jimbo, M.: Monodromy problem and the boundary condition for some Painlevé transcendents, Publ. RIMS, Kyoto Univ. 18 (1982), 1137–1161.Google Scholar
  21. 21.
    Jimbo, M., Miwa, T. and Ueno, K.: Monodromy preserving deformations of linear ordinary differential equations with rational coefficients (I), Physica D 2 (1981), 306.Google Scholar
  22. 22.
    Jimbo, M. and Miwa, T.: Monodromy preserving deformations of linear ordinary differential equations with rational coefficients (II), Physica D 2 (1981), 407–448.Google Scholar
  23. 23.
    Jimbo, M. and Miwa, T.: Monodromy preserving deformations of linear ordinary differential equations with rational coefficients (III), Physica D 4 (1981), 26.Google Scholar
  24. 24.
    Kontsevich, M. and Manin, Y. I.: Gromov-Witten classes, quantum cohomology and enumerative geometry, Comm. Math. Phys 164 (1994), 525–562.Google Scholar
  25. 25.
    Malgrange, B.: Équations différentielles à coefficientes polynomiaux, Birkhauser, Basel, 1991.Google Scholar
  26. 26.
    Manin, V. I.: Frobenius Manifolds, Quantum Cohomology and Moduli Spaces, Max Planck Institut fur Mathematik, Bonn, Germany, 1998.Google Scholar
  27. 27.
    Miwa, T.: Painlevé property of monodromy preserving equations and the analyticity of τ-functions, Publ. RIMS 17 (1981), 703–721.Google Scholar
  28. 28.
    Painlevé, P.: Sur les équations differentielles du second ordre et d'ordre supérieur, dont l'intégrale générale est uniforme, Acta Math. 25 (1900), 1–86.Google Scholar
  29. 29.
    Ruan, Y. and Tian, G.: A mathematical theory of quantum cohomology, Math. Res. Lett. 1 (1994), 269–278.Google Scholar
  30. 30.
    Saito, K.: Preprint RIMS-288, 1979 and Publ. RIMS 19 (1983), 1231–1264.Google Scholar
  31. 31.
    Saito, K., Yano, T. and Sekeguchi, J.: Comm. Algebra 8(4) (1980), 373–408.Google Scholar
  32. 32.
    Sato, M., Miwa, T. and Jimbo, M.: Holonomic quantum fields. II - The Riemann-Hilbert problem, Publ. RIMS Kyoto. Univ. 15 (1979), 201–278.Google Scholar
  33. 33.
    Shimomura, S.: Painlevé trascendents in the neighbourhood of fixed singular points, Funkcial. Ekvac. 25 (1982), 163–184. Series expansions of Painlevé trascendents in the neighbourhood of a fixed singular point, Funkcial. Ekvac. 25 (1982), 185-197. Supplement to 'series expansions of Painlevé trascendents in the neighbourhood of a fixed singular point', Funkcial. Ekvac. 25 (1982), 363-371. A family of solutions of a nonlinear ordinary differntial equation and its application to Painlevé equations (III), (V), (VI), J. Math. Soc. Japan 39 (1987), 649-662.Google Scholar
  34. 34.
    Witten, E.: Nuclear Phys. B 340 (1990), 281–332.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Davide Guzzetti
    • 1
  1. 1.Research Institute for Mathematical Sciences (RIMS)Kyoto UniversityKitashirakawa, Sakyo-ku, KyotoJapan

Personalised recommendations