Journal of Dynamics and Differential Equations

, Volume 14, Issue 1, pp 139–188

Asymptotic Behavior of Positive Solutions of Random and Stochastic Parabolic Equations of Fisher and Kolmogorov Types

  • Georg Hetzer
  • Wenxian Shen
  • Shu Zhu
Article

Abstract

We study the asymptotic behavior as t→∞ of positive solutions for random and stochastic parabolic equations of Fisher and Kolmogorov type. The following alternatives are established. Either (i) all positive solutions converge to one and the same trivial equilibrium, or (ii) every positive solution is neither bounded away from the trivial equilibria nor converges to them, or (iii) every positive solution is bounded away from the trivial equilibria. Moreover, for the random equation, we provide in case of alternative (iii) a fairly general condition under which every positive solution converges to uniformly positive equilibria. In the stochastic case, it is proved that there is no uniformly positive equilibrium, and under an appropriate condition, (iii) never occurs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Arnold, L. (1998). Random Dynamical Systems, Springer-Verlag, Berlin.Google Scholar
  2. 2.
    Arnold, L., and Chueshov, I. (1998). Order-preserving random dynamical systems: Equi-libria, attractors, applications. Dynamics and Stability of Systems 13, 265-280.Google Scholar
  3. 3.
    Arnold, L., and Chueshov, I. (1998). A limit trichotomy for order-preserving random systems, Institut fü r Dynamische Systeme, Universität Bremen, Report 437, to appear in ``Positivity.''Google Scholar
  4. 4.
    Aronson, D. C., and Weinberger, H. F. (1975). Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, Lecture Notes in Mathematics, Vol. 446, Springer, New York, pp. 5-49.Google Scholar
  5. 5.
    Cantrell, R. S., and Cosner, C. (1991). The effects of spatial heterogeneity in population dynamics. J. Math. Biol. 29, 315-338.Google Scholar
  6. 6.
    Cantrell, R. S., and Cosner, C. (1989). Diffusive logistic equations with indefinite weights: Population models in disrupted environments I. Proc. Roy. Soc. Edinburgh, Sect. A 112, 293-318.Google Scholar
  7. 7.
    Cantrell, R. S., and Cosner, C. (1991). Diffusive logistic equations with indefinite weights: Population models in disrupted environments II. SIAM J. Math. Anal. 22, 1043-1064.Google Scholar
  8. 8.
    Chueshov, I. D., and Vuillermot, P.-A. (1998). Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Stratonovich's case. Probab. Theory Relat. Fields 112, 149-202.Google Scholar
  9. 9.
    Chueshov, I. D., and Vuillermot, P.-A. (1998). Long-time behavior of solutions to a class of quasilinear parabolic equations with random coefficients. Ann. Inst. Henri Poincaré 15, 191-232.Google Scholar
  10. 10.
    Crauel, H., and Flandoli, F. (1994). Attractors for random dynamical systems. Probab. Theory Relat. Fields 100, 365-393.Google Scholar
  11. 11.
    Crauel, H., and Flandoli, F. (1998). Additive noise destroys a Pitchfork bifurcation. J. Dynamics and Diff. Eq. 10, 259-274.Google Scholar
  12. 12.
    Fife, P. C. (1979). Lecture notes in biomathematics, Springer-Verlag.Google Scholar
  13. 13.
    Fife, P. C., and Peletier, L. A. (1977). Nonlinear diffusion in population genetics. Arch. Rat. Mech. Anal. 64, 93-109.Google Scholar
  14. 14.
    Fisher, R. A. (1950). Gene frequencies in a cline determined by selection and diffusion. Biometrics 6, 353-361.Google Scholar
  15. 15.
    Fleming, W. H. (1975). A selection-migration model in population genetics. J. Math. Biol. 2, 219-233.Google Scholar
  16. 16.
    Henry, D. (1981). Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, Vol.840, Springer-Verlag, Berlin.Google Scholar
  17. 17.
    Hess, P. (1991). Periodic-parabolic boundary value problems and positivity, Pitman Research Notes in Mathematics, Vol. 247.Google Scholar
  18. 18.
    Hess, P., and Weinberger, H. (1990). Convergence to spatial-temporal clines in the Fisher equation with time-periodic fitness. J. Math. Biol. 28, 83-98.Google Scholar
  19. 19.
    Krylov, N. V., and Rozovskii, B. L. (1981). Stochastic evolution equations. J. Sov. Math. 16, 1233-1277.Google Scholar
  20. 20.
    Pinsky, R. G. (1995). Positive Harmonic Functions and Diffusion, CUP, Cambridge.Google Scholar
  21. 21.
    Shen, W., and Yi, Y. (1998). Convergence in almost periodic Fisher and Kolmogorov models. J. Math. Biol. 37, 84-102.Google Scholar
  22. 22.
    Vuillermot, P.-A. (1991). Almost periodic attractors for a class of nonautonomous reaction-diffusion equations on ℝN, I. Global stabilization processes. J. Diff. Eq. 94, 228-253.Google Scholar
  23. 23.
    Vuillermot, P.-A. (1992). Almost periodic attractors for a class of nonautonomous reaction-diffusion equations on ℝN, II. Codimension-one stable manifolds. Diff. Int. Eq. 5, 693-720.Google Scholar
  24. 24.
    Vuillermot, P.-A. (1994). Almost periodic attractors for a class of nonautonomous reaction-diffusion equations on ℝN, III. Center curves and Liapunov stability. Nonlinear Anal. 22, 533-559.Google Scholar
  25. 25.
    Wu, J., Zhao, X.-Q., and He, X. (1996). Global asymptotic behavior in almost periodic Kolmogorov equations and chemostat models, preprint.Google Scholar
  26. 26.
    Zhao, X.-Q., and Hutson, V. (1994). Permanence in Kolmogorov periodic predator-prey models with diffusion. Nonlinear Anal. Theor. Method. Appl. 23, 651-668.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Georg Hetzer
    • 1
  • Wenxian Shen
    • 1
  • Shu Zhu
    • 2
  1. 1.Department of MathematicsAuburn University, Auburn UniversityAlabama
  2. 2.School of Mathematical SciencesPeking UniversityBeijingPeople's Republic of China

Personalised recommendations