Advertisement

Journal of Biomolecular NMR

, Volume 21, Issue 3, pp 249–261 | Cite as

Amide proton temperature coefficients as hydrogen bond indicators in proteins

  • Tomasz Cierpicki
  • Jacek Otlewski
Article

Abstract

Correlations between amide proton temperature coefficients (ΔσHN/ΔT) and hydrogen bonds were investigated for a data set of 793 amides derived from 14 proteins. For amide protons showing temperature gradients more positive than −4.6 ppb/K there is a hydrogen bond predictivity value exceeding 85%. It increases to over 93% for amides within the range between −4 and −1 ppb/K. Detailed analysis shows an inverse proportionality between amide proton temperature coefficients and hydrogen bond lengths. Furthermore, for hydrogen bonds of similar bond lengths, values of temperature gradients in α-helices are on average 1 ppb/K more negative than in β-sheets. In consequence, a number of amide protons in α-helices involved in hydrogen bonds shorter than 2 Å show ΔσHN/ΔT < −4.6 ppb/K. Due to longer hydrogen bonds, 90% of amides in 310 helices and 98% in β-turns have temperature coefficients more positive than –4.6ppb/K. Ring current effect also significantly influences temperature coefficients of amide protons. In seven out of eight cases non-hydrogen bonded amides strongly deshielded by neighboring aromatic rings show temperature coefficients more positive than −2 ppb/K. In general, amide proton temperature gradients do not change with pH unless they correspond to conformational changes. Three examples of pH dependent equilibrium showing hydrogen bond formation at higher pH were found. In conclusion, amide proton temperature coefficients offer an attractive and simple way to confirm existence of hydrogen bonds in NMR determined structures.

amide proton temperature coefficients chemical shifts hydrogen bonds ring current secondary structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, N.H., Neidigh, J.W., Harris, S.M., Lee, G.M., Liu, Z. and Tong, H. (1997) J. Am. Chem. Soc., 119, 8547-8561.Google Scholar
  2. Asakura, T., Taoka, K., Demura, M. and Williamson, M.P. (1995) J. Biomol. NMR, 6, 227-236.Google Scholar
  3. Baxter, N.J. and Williamson, M.P. (1997) J. Biomol. NMR, 9, 359-369.Google Scholar
  4. Baxter, N.J., Hosszu, L.L., Waltho, J.P. and Williamson, M.P. (1998) J. Mol. Biol., 284, 1625-1639.Google Scholar
  5. Braunschweiler, L. and Ernst, R.R. (1983) J. Magn. Reson., 53, 521-528.Google Scholar
  6. Cheney, J., Cheney, B.V. and Richards, W.G. (1988) Biochim. Biophys. Acta., 954, 137-139.Google Scholar
  7. Cierpicki, T. and Otlewski, J. (2000) J. Mol. Biol., 302, 1179-1192.Google Scholar
  8. Cierpicki, T., Bania, J. and Otlewski, J. (2000) Protein Sci., 9, 976-984.Google Scholar
  9. Contreras, M.A., Haack, T., Royo, M., Giralt, E. and Pons, M. (1997) Lett. Pept. Sci., 4, 29-39.Google Scholar
  10. Davis, J.H., Bradley, E.K., Miljanich, G.P., Nadasdi, L., Ramachandran, J. and Basus, V.J. (1993) Biochemistry, 32, 7396-7405.Google Scholar
  11. Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J. and Bax, A. (1995) J. Biomol. NMR, 6, 277-293.Google Scholar
  12. Desiraju, G. and Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press, Oxford.Google Scholar
  13. Dyson, H.J., Rance, M., Houghten, R.A., Lerner, R.A. and Wright, P.E. (1988a) J. Mol. Biol., 201, 161-200.Google Scholar
  14. Dyson, H.J., Rance, M., Houghten, R.A., Wright, P.E. and Lerner, R.A. (1988b) J. Mol. Biol., 201, 201-17.Google Scholar
  15. Fersht, A.R. (1987) TIBS 12, 301-304.Google Scholar
  16. Goddard, T.D. and Kneller, D.G. SPARKY 3, University of California, San Francisco.Google Scholar
  17. Heinz, D.W., Hyberts, S.G., Peng, J.W., Priestle, J.P., Wagner, G. and Grutter, M.G. (1992) Biochemistry, 31, 8755-8766.Google Scholar
  18. Hosszu, L.L., Craven, C.J., Spencer, J., Parker, M.J., Clarke, A.R., Kelly, M. and Waltho, J.P. (1997) Biochemistry, 36, 333-340.Google Scholar
  19. Kopple, D.K., Ohnishi, M. and Go, A. (1969) J. Am. Chem. Soc., 91, 4264-4272.Google Scholar
  20. Koradi, R., Billeter, M. and Wüthrich, K. (1996) J. Mol. Graph., 14, 51-55.Google Scholar
  21. Kraulis, J., Clore, G.M., Nilges, M., Jones, T.A., Pettersson, G., Knowles, J. and Gronenborn, A.M. (1989) Biochemistry, 28, 7241-7257.Google Scholar
  22. Krebs, D., Maroun, R.G., Sourgen, F., Troalen, F., Davoust, D. and Fermandjian, S. (1998) Eur. J. Biochem., 253, 236-44.Google Scholar
  23. Kuntz, I.D., Kosen, P.A. and Craig, E.C. (1991) J. Am. Chem. Soc., 113, 1406-1408.Google Scholar
  24. Levitt, M. and Perutz, M.F. (1988) J. Mol. Biol., 201, 751-754.Google Scholar
  25. McDonald, I.K. and Thornton, J.M. (1994) J. Mol. Biol., 238, 777-793.Google Scholar
  26. Merutka, G., Dyson, H.J. and Wright, P.E. (1995) J. Biomol. NMR, 5, 14-24.Google Scholar
  27. Mitchell, J.B., Nandi, C.L., McDonald, I.K., Thornton, J.M. and Price, S.L. (1994) J. Mol. Biol., 239, 315-331.Google Scholar
  28. Nielsen, K.J., Alewood, D., Andrews, J., Kent, S.B. and Craik, D.J. (1994) Protein Sci., 3, 291-302.Google Scholar
  29. Nielsen, K.J., Heath, R.L., Anderson, M.A. and Craik, D.J. (1995) Biochemistry, 34, 14304-14311.Google Scholar
  30. Nilges, M., Habazettl, J., Brunger, A.T. and Holak, T.A. (1991) J. Mol. Biol., 219, 499-510.Google Scholar
  31. Ohnishi, M. and Urry, D.W. (1969) Biochem. Biophys. Res. Commun., 36, 194-202.Google Scholar
  32. Otlewski, J., Polanowski, A., Leluk, J. and Wilusz, T. (1984) Acta Biochim. Pol., 31, 267-278.Google Scholar
  33. Rajarathnam, K., Clark-Lewis, I., Dewald, B., Baggiolini, M. and Sykes, B.D. (1996) FEBS Lett., 399, 43-46.Google Scholar
  34. Tilton, R.F., Dewan, J.C. and Petsko, G.A. (1992) Biochemistry, 31, 2469-2481.Google Scholar
  35. Timkovich, R. (1990) Biochemistry, 29, 7773-7780.Google Scholar
  36. Wagner, G., Pardi, A. and Wuthrich, K. (1983) J. Am. Chem. Soc., 1983, 5948-5949.Google Scholar
  37. Wishart, D.S., Sykes, B.D. and Richards, F.M. (1991) J. Mol. Biol., 222, 311-333.Google Scholar
  38. Zhou, N.E., Zhu, B., Sykes, B.D. and Hodges, R.S. (1992) J. Am. Chem. Soc., 114, 4320-4326.Google Scholar
  39. Zimmermann, G.R., Legault, P., Selsted, M.E. and Pardi, A. (1995) Biochemistry, 34, 13663-13671.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Tomasz Cierpicki
    • 1
  • Jacek Otlewski
    • 1
  1. 1.Laboratory of Protein Engineering, Institute of Biochemistry and Molecular BiologyUniversity of WrocławPoland

Personalised recommendations