Journal of Cluster Science

, Volume 12, Issue 3, pp 513–525 | Cite as

Growth and Formation of Fullerene Clusters

  • J. L. Martins
  • F. A. Reuse
  • S. N. Khanna


Theoretical studies on the stability and electronic structure of small carbon clusters assuming chain, ring, bowl, and fullerene structures have been carried out using a linear combination of atomic orbitals molecular orbital approach within a density functional formalism. Our studies on clusters containing between 12 and 60 atoms indicate three regimes for the growth and formation of carbon clusters. In clusters containing less than 20 atoms, the most stable geometry is the ring arrangements. Between 20 and 28 atoms, clusters with very different geometry have comparable energies. For clusters with larger than 30 atoms, the fullerene structures are the most stable structures. An analysis of the electronic structure shows a distinct correlation between the geometry and the nature of electronic states.

fullerene clusters electronic structure theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley (1985). Nature (London) 318, 162; in K. Sattler (ed. ), Cluster Assembled Materials (Trans Tech. Publications, Switzerland, 1996); B. C. Guo, K. P. Kens, and A. W. Castleman, Jr. (1992). Science 255 1411.Google Scholar
  2. 2.
    J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai (2000). Science 287, 622.Google Scholar
  3. 3.
    W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman (1990). Nature (London) 347, 354.Google Scholar
  4. 4.
    W. Andreoni (ed. ), The Dynamical Physics of Fullerenes 10 (and 5) Years Later, NATO ASI series E Vol. 316 (Kluwer, Dordrecht, 1996); in H. Ehrenreich and F. Spaepen (ed. ), Solid State Physics, Vol. 48, (Academic Press, Boston, 1994).Google Scholar
  5. 5.
    F. D. Weiss, S. C. O'Brien, J. L. Elkind, R. F. Curl, and R. E. Smalley (1988). J. Am. Chem. Soc. 110, 4464.Google Scholar
  6. 6.
    R. E. Smalley (1992). Acct. Chem. Res. 25, 97.Google Scholar
  7. 7.
    G. von Helden, N. G. Gotts, and M. T. Bowers (1993). Nature 363.Google Scholar
  8. 8.
    J. Xiaodun and J. R. Chelikowsky (1992). Phys. Rev. B. 46, 5028.Google Scholar
  9. 9.
    P. Hohenberg and W. Kohn (1964). Phys. Rev. 136, B864. W. Kohn and L. J. Sham (1965). Phys. Rev. 140, A1133.Google Scholar
  10. 10.
    D. M. Ceperley and B. J. Alder (1980). Phys. Rev. Lett. 45, 566.Google Scholar
  11. 11.
    J. Perdew and A. Zunger (1981). Phys. Rev. B 23, 5048.Google Scholar
  12. 12.
    G. B. Bachelet, D. R. Hamann, and M. Schluter (1982). Phys. Rev. B 26, 4199.Google Scholar
  13. 13.
    J. L. Martins, R. Car, and J. Buttet (1983). J. Chem. Phys. 78, 5646-5655. J. L. Martins, J. Buttet, and R. Car (1985). Phys. Rev. B 31, 1804-1816. V. de Coulon, J. L. Martins, and F. Reuse (1992). Phys. Rev. B 45, 13671-13675.Google Scholar
  14. 14.
    K. Ragavachari et al. (1993). Chem. Phys. Lett. 214, 357. K. Ragavachari et al. (1994). Chem. Phys. Lett. 220, 385. J. C. Grossman, L. Mitas, and K. Ragavachari (1995). Phys. Rev. Lett. 75, 3870.Google Scholar
  15. 15.
    D. Tomanek and M. A. Schluter (1991). Phys. Rev. Lett. 67, 2331.Google Scholar
  16. 16.
    R. O. Jones (1999). J. Chem. Phys. 110, 5189.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • J. L. Martins
    • 1
    • 2
  • F. A. Reuse
    • 3
  • S. N. Khanna
    • 4
  1. 1.Departamento de FisicaInstituto Superior TecnicoLisboa CodexPortugal
  2. 2.INESCLisboaPortugal
  3. 3.Department de Physique, Ecole Polytechnique Federale de LausanneInstitute de Physique ExperimentaleSwitzerland
  4. 4.Physics DepartmentVirginia Commonwealth UniversityRichmond

Personalised recommendations