Journal of Bioenergetics and Biomembranes

, Volume 33, Issue 6, pp 481–491 | Cite as

The Mechanism of Action of Multidrug-Resistance-Linked P-Glycoprotein

  • Zuben E. Sauna
  • Melissa M. Smith
  • Marianna Müller
  • Kathleen M. Kerr
  • Suresh V. Ambudkar
Article

Abstract

P-glycoprotein (Pgp), the ATP-binding cassette (ABC) transporter, confers multidrug resistance to cancer cells by extruding cytotoxic natural product amphipathic drugs using the energy of ATP hydrolysis. Our studies are directed toward understanding the mechanism of action of Pgp and recent work deals with the assessment of interaction between substrate and ATP sites and elucidation of the catalytic cycle of ATP hydrolysis. The kinetic analyses of ATP hydrolysis by reconstituted purified Pgp suggest that ADP release is the rate-limiting step in the catalytic cycle and the substrates exert their effect by modulating ADP release. In addition, we provide evidence for two distinct roles for ATP hydrolysis in a single turnover of Pgp, one in the transport of drug and the other in effecting conformational changes so as to reset the transporter for the next catalytic cycle. Detailed kinetic measurements determined that both nucleotide-binding domains behave symmetrically and during individual hydrolysis events the ATP sites are recruited in a random manner. Furthermore, only one nucleotide site hydrolyzes ATP at any given time, causing (in this site) a conformational change that drastically decreases (>30-fold) the affinity of the second site for ATP-binding. Thus, the blocking of ATP-binding to the second site while the first one is in catalytic conformation appears to be the basis for the alternate catalytic cycle of ATP hydrolysis by Pgp, and this may be applicable as well to other ABC transporters linked with the development of multidrug resistance.

ABC transporter ATP hydrolysis cancer chemotherapy catalytic cycle multidrug resistance P-glycoprotein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. al-Shawi, M. K., Urbatsch, I. L., and Senior, A. E. (1994). J. Biol. Chem. 269, 8986–8992.Google Scholar
  2. Allen, J. D., Brinkhuis, R. F., van Deemter, L., Wijnholds, J., and Schinkel, A. H. (2000). Cancer Res. 60, 5761–5766.Google Scholar
  3. Allikmets, R., Schriml, L. M., Hutchinson, A., Romano-Spica, V., and Dean, M. (1998). Cancer Res. 58, 5337–5339.Google Scholar
  4. Ambudkar, S. V. (1998). Methods Enzymol. 292, 504–514.Google Scholar
  5. Ambudkar, S. V., Cardarelli, C. O., Pashinsky, I., and Stein, W. D. (1997). J. Biol. Chem. 272, 21160–21166.Google Scholar
  6. Ambudkar, S. V., Dey, S., Hrycyna, C. A., Ramachandra, M., Pastan, I., and Gottesman, M. M. (1999). Annu. Rev. Pharmacol. Toxicol. 39, 361–398.Google Scholar
  7. Ambudkar, S. V., Lelong, I. H., Zhang, J., Cardarelli, C. O., Gottesman, M. M., and Pastan, I. (1992). Proc. Natl. Acad. Sci. U.S.A. 89, 8472–8476.Google Scholar
  8. Bakos, E., Evers, R., Szakacs, G., Tusnady, G. E., Welker, E., Szabo, K., de Haas, M., van Deemter, L., Borst, P., Varadi, A., and Sarkadi, B. (1998). J. Biol. Chem. 273, 32167–32175.Google Scholar
  9. Borst, P. (1999). Ann. Oncol. 10, 162–164.Google Scholar
  10. Borst, P., and Schinkel, A. H. (1996). Eur. J. Cancer 32A, 985–990.Google Scholar
  11. Borst, P., and Schinkel, A. H. (1997). Trends Genet. 13, 217–222.Google Scholar
  12. Bruggemann, E. P., Currier, S. J., Gottesman, M. M., and Pastan, I. (1992). J. Biol. Chem. 267, 21020–21026.Google Scholar
  13. Bruggemann, E. P., Germann, U. A., Gottesman, M. M., and Pastan, I. (1989). J. Biol. Chem. 264, 15483–15488.Google Scholar
  14. Chen, C. J., Chin, J. E., Ueda, K., Clark, D. P., Pastan, I., Gottesman, M. M., and Roninson, I. B. (1986). Cell 47, 381–389.Google Scholar
  15. Cole, S. P., Bhardwaj, G., Gerlach, J. H., Mackie, J. E., Grant, C. E., Almquist, K. C., Stewart, A. J., Kurz, E. U., Duncan, A. M., and Deeley, R. G. (1992). Science 258, 1650–1654.Google Scholar
  16. Cole, S. P., and Deeley, R. G. (1998). Bioessays 20, 931–940.Google Scholar
  17. Dean, M., and Allikmets, R. (2001). J. Bioenerg. Biomembr. 33(6), 449–526.Google Scholar
  18. Demmer, A., Thole, H., Kubesch, P., Brandt, T., Raida, M., Fislage, R., and Tummler, B. (1997). J. Biol. Chem. 272, 20913–20919.Google Scholar
  19. Dey, S., Ramachandra, M., Pastan, I., Gottesman, M. M., and Ambudkar, S. V. (1997). Proc. Natl. Acad. Sci. U.S.A. 94, 10594–10599.Google Scholar
  20. Diederichs, K., Diez, J., Greller, G., Muller, C., Breed, J., Schnell, C., Vonrhein, C., Boos, W., and Welte, W. (2000). Embo. J. 19, 5951–5961.Google Scholar
  21. Doyle, L. A., Yang, W., Abruzzo, L. V., Krogmann, T., Gao, Y., Rishi, A. K., and Ross, D. D. (1998). Proc. Natl. Acad. Sci. U.S.A. 95, 15665–15670.Google Scholar
  22. Endicott, J. A., and Ling, V. (1989). Annu. Rev. Biochem. 58, 137–171.Google Scholar
  23. Ford, J. M., and Hait, W. N. (1990). Pharmacol. Rev. 42, 155–199.Google Scholar
  24. Germann, U. A. (1996). Eur. J. Cancer 32A, 927–944.Google Scholar
  25. Gottesman, M. M., Ambudkar, S. V., Ni, B., Aran, J. M., Sugimoto, Y., Cardarelli, C. O., and Pastan, I. (1994). Cold Spring Harb. Symp. Quant. Biol. 59, 677–683.Google Scholar
  26. Gottesman, M. M., Hrycyna, C. A., Schoenlein, P. V., Germann, U. A., and Pastan, I. (1995). Annu. Rev. Genet. 29, 607–649.Google Scholar
  27. Gottesman, M. M., and Pastan, I. (1993). Annu. Rev. Biochem. 62, 385–427.Google Scholar
  28. Greenberger, L. M. (1993). J. Biol. Chem. 268, 11417–11425.Google Scholar
  29. Hafkemeyer, P., Dey, S., Ambudkar, S. V., Hrycyna, C. A., Pastan, I., and Gottesman, M. M. (1998). Biochemistry 37, 16400–16409.Google Scholar
  30. Higgins, C. F., and Gottesman, M. M. (1992). Trends Biochem. Sci. 17, 18–21.Google Scholar
  31. Hrycyna, C. A., Ramachandra, M., Ambudkar, S.V., Ko, Y. H., Pedersen, P. L., Pastan, I., and Gottesman, M. M. (1998). J. Biol. Chem. 273, 16631–16634.Google Scholar
  32. Hrycyna, C. A., Ramachandra, M., Germann, U. A., Cheng, P.W., Pastan, I., and Gottesman, M. M. (1999). Biochemistry 38, 13887–13899.Google Scholar
  33. Johnson, D. R., Finch, R. A., Lin, Z. P., Zeiss, C. J., and Sartorelli, A. C. (2001). Cancer Res. 61, 1469–1476.Google Scholar
  34. Juliano, R. L., and Ling, V. (1976). Biochim. Biophys. Acta. 455, 152–162.Google Scholar
  35. Kerr, K. M., Sauna, Z. E., and Ambudkar, S. V. (2001). J. Biol. Chem. 276, 8657–8664.Google Scholar
  36. Lamers, M. H., Perrakis, A., Enzlin, J. H., Winterwerp, H. H., de Wind, N., and Sixma, T. K. (2000). Nature 407, 711–717.Google Scholar
  37. Leith, C. P., Kopecky, K. J., Chen, I. M., Eijdems, L., Slovak, M. L., McConnell, T. S., Head, D. R., Weick, J., Grever, M. R., Appelbaum, F. R., and Willman, C. L. (1999). Blood 94, 1086–1099.Google Scholar
  38. Lelong, I. H., Cardarelli, C. O., Gottesman, M. M., and Pastan, I. (1994). Biochemistry 33, 8921–8929.Google Scholar
  39. Litman, T., Brangi, M., Hudson, E., Fetsch, P., Abati, A., Ross, D. D., Miyake, K., Resau, J. H., and Bates S. E. (2000). J. Cell. Sci. 113, 2011–2021.Google Scholar
  40. Liu, C. E., Liu, P. Q., and Ames, G. F. L. (1997). J. Biol. Chem. 272, 21883–21891.Google Scholar
  41. Liu, R., and Sharom, F. J. (1996). Biochemistry 35, 11865–11873.Google Scholar
  42. Loe, D. W., Deeley, R. G., and Cole, S. P. (1996). Eur. J. Cancer 32A, 945–957.Google Scholar
  43. Loo, T. W., and Clarke, D. M. (1995a). J. Biol. Chem. 270, 22957–22961.Google Scholar
  44. Loo, T. W., and Clarke, D. M. (1995b). J. Biol. Chem. 270, 21449–21452.Google Scholar
  45. T. W., and Clarke, D. M. (2000). J. Biol. Chem. 275, 39272–39278.Google Scholar
  46. Mimmack, M. L., Gallagher, M. P., Pearce, S. R., Hyde, S. C., Booth, I. R., and Higgins, C. F. (1989). Proc. Natl. Acad. Sci. U.S.A. 86, 8257–8261.Google Scholar
  47. Miyake, K., Mickley, L., Litman, T., Zhan, Z., Robey, R., Cristensen, B., Brangi, M., Greenberger, L., Dean, M., Fojo, T., and Bates, S. E. (1999). Cancer Res. 59, 8–13.Google Scholar
  48. Morris, D. I., Greenberger, L. M., Bruggemann, E. P., Cardarelli, C., Gottesman, M. M., Pastan, I., and Seamon, K. B. (1994). Mol. Pharmacol. 46, 329–337.Google Scholar
  49. Ng, I. O., Lam, K. Y., Ng, M., Kwong, D. L., and Sham, J. S. (1998). Cancer 83, 851–857.Google Scholar
  50. Obmolova, G., Ban, C., Hsieh, P., and Yang, W. (2000). Nature 407, 703–710.Google Scholar
  51. Ramachandra, M., Ambudkar, S. V., Chen, D., Hrycyna, C. A., Dey, S., Gottesman, M. M., and Pastan, I. (1998). Biochemistry 37, 5010–5019.Google Scholar
  52. Ramachandra, M., Ambudkar, S. V., Gottesman, M. M., Pastan, I., and Hrycyna, C. A. (1996). Mol. Biol. Cell 7, 1485–1498.Google Scholar
  53. Roepe, P. D. (1995). Biochim. Biophys. Acta 1241, 385–405.Google Scholar
  54. Ruetz, S., and Gros, P. (1994). J. Biol. Chem. 269, 12277–12284.Google Scholar
  55. Sankaran, B., Bhagat, S., and Senior, A. E. (1997). Biochemistry 36, 6847–6853.Google Scholar
  56. Sarkadi, B., Price, E. M., Boucher, R. C., Germann, U. A., and Scarborough, G. A. (1992). J. Biol. Chem. 267, 4854–4858.Google Scholar
  57. Sauna, Z. E., and Ambudkar, S. V. (2000). Proc. Natl. Acad. Sci. U.S.A. 97, 2515–2520.Google Scholar
  58. Sauna, Z. E., and Ambudkar, S. V. (2001). J. Biol. Chem. 276, 11653–11661.Google Scholar
  59. Sauna, Z. E., Smith, M. M., Muller, M., and Ambudkar, S. V. (2001). J. Biol. Chem. 276, 21199–21208.Google Scholar
  60. Scarborough, G. A. (1995). J. Bioenerg. Biomembr. 27, 37–41.Google Scholar
  61. Schinkel, A. H. (1997). Semin. Cancer Biol. 8, 161–170.Google Scholar
  62. Schinkel, A. H., Mayer, U., Wagenaar, E., Mol, C. A., van Deemter, L., Smit, J. J., van der Valk, M. A., Voordouw, A. C., Spits, H., van Tellingen, O., Zijlmans, J. M., Fibbe, W. E., and Borst, P. (1997). Proc. Natl. Acad. Sci. U.S.A. 94, 4028–4033.Google Scholar
  63. Schinkel, A. H., Smit, J. J., van Tellingen, O., Beijnen, J. H., Wagenaar, E., van Deemter, L., Mol, C. A., van der Valk, M. A., Robanus-Maandag, E. C., te Riele, H. P., Berns, A. J. M., and Borst, P. (1994). Cell 77, 491–502.Google Scholar
  64. Seelig, A. (1998a). Eur. J. Biochem. 251, 252–261.Google Scholar
  65. Seelig, A. (1998b). Int. J. Clin. Pharmacol. Ther. 36, 50–54.Google Scholar
  66. Senior, A. E. (1998). Acta Physiol. Scand. Suppl. 643, 213–218.Google Scholar
  67. Senior, A. E., al-Shawi, M. K., and Urbatsch, I. L. (1995a). J. Bioenerg. Biomembr. 27, 31–36.Google Scholar
  68. Senior, A. E., al-Shawi, M. K., and Urbatsch, I. L. (1995b). FEBS Lett. 377, 285–289.Google Scholar
  69. Senior, A. E., al-Shawi, M. K., and Urbatsch, I. L. (1998). Methods Enzymol. 292, 514–523.Google Scholar
  70. Senior, A. E., and Gadsby, D. C. (1997). Semin. Cancer Biol. 8, 143–150.Google Scholar
  71. Shapiro, A. B., and Ling, V. (1995). J. Biol. Chem. 270, 16167–16175.Google Scholar
  72. Shapiro, A. B., and Ling, V. (1998). Eur. J. Biochem. 254, 189–193.Google Scholar
  73. Sharom, F. J. (1997). J. Membr. Biol. 160, 161–175.Google Scholar
  74. Sharom, F. J., Liu, R., Romsicki, Y., and Lu, P. (1999). Biochim. Biophys. Acta 1461, 327–345.Google Scholar
  75. Sharom, F. J., Yu, X., Chu, J. W., and Doige, C. A. (1995). Biochem. J. 308, 381–390.Google Scholar
  76. Sharom, F. J., Yu, X., and Doige, C. A. (1993). J. Biol. Chem. 268, 24197–24202.Google Scholar
  77. Smith, C. A., and Rayment, I. (1996). Biochemistry 35, 5404–5417.Google Scholar
  78. Szabo, K., Welker, E., Bakos, Muller, M., Roninson, I., Varadi, A., and Sarkadi, B. (1998). J. Biol. Chem. 273, 10132–10138.Google Scholar
  79. Tan, B., Piwnica-Worms, D., and Ratner, L. (2000). Curr. Opin. Oncol. 12, 450–458.Google Scholar
  80. Trock, B. J., Leonessa, F., and Clarke, R. (1997). J. Natl. Cancer Inst. 89, 917–931.Google Scholar
  81. Tsuruo, T., Iida, H., Tsukagoshi, S., and Sakurai, Y. (1982). Cancer Res. 42, 4730–4733.Google Scholar
  82. Tusnady, G. E., Bakos, E., Varadi, A., and Sarkadi, B. (1997). FEBS Lett. 402, 1–3.Google Scholar
  83. Urbatsch, I. L., al-Shawi, M. K., and Senior, A. E. (1994). Biochemistry 33, 7069–7076.Google Scholar
  84. Urbatsch, I. L., Beaudet, L., Carrier, I., and Gros, P. (1998). Biochemistry 37, 4592–4602.Google Scholar
  85. Urbatsch, I. L., Gimi, K., Wilke-Mounts, S., and Senior, A. E. (2000). J. Biol. Chem. 275, 25031–25038.Google Scholar
  86. Urbatsch, I. L., Sankaran, B., Bhagat, S., and Senior, A. E. (1995a). J. Biol. Chem. 270, 26956–26961.Google Scholar
  87. Urbatsch, I. L., Sankaran, B., Weber, J., and Senior, A. E. (1995b). J. Biol. Chem. 270, 19383–19390.Google Scholar
  88. van der Zee, A. G., Hollema, H., Suurmeijer, A. J., Krans, M., Sluiter, W. J., Willemse, P. H., Aalders, J. G., and de Vries, E. G. (1995). J. Clin. Oncol. 13, 70–78.Google Scholar
  89. Yuen, A. R., and Sikic, B. I. (1994). J. Clin. Oncol. 12, 2453–2459.Google Scholar
  90. Zhou, T., Radaev, S., Rosen, B. P., and Gatti, D. L. (2000). Embo. J. 19, 4838–4845.Google Scholar
  91. Zochbauer, S., Gsur, A., Brunner, R., Kyrle, P. A., Lechner, K., and Pirker, R. (1994). Leukemia 8, 974–977.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Zuben E. Sauna
  • Melissa M. Smith
  • Marianna Müller
  • Kathleen M. Kerr
  • Suresh V. Ambudkar

There are no affiliations available

Personalised recommendations