Development of opto-electronic devices using electrochemically grown thin ZnSe layers

  • A. P. Samantilleke
  • I. M. Dharmadasa
  • K. A. Prior
  • K. L. Choy
  • J. Mei
  • R. Bacewicz
  • A. Wolska
Article

Abstract

ZnSe thin films of both p and n conducting types were successfully deposited on transparent conducting glass substrates using an electrochemical deposition technique. Thin films were deposited from an aqueous acidic electrolyte containing \( ZnSO_4 \) and \( H_2 SeO_3 \). Deposition of thin films in a voltage range of 0.0 to −1.0 V was investigated by means of a voltamogram. The most suitable deposition voltage range was found to be −0.48 to −0.62 V for ZnSe in this aqueous medium. The nature of the surface of the conducting glass and the deposited ZnSe layers were studied using atomic force microscopy (AFM). Although the substrate surface was rough and spiky as observed from the AFM studies, electrodeposited ZnSe layers exhibit good crystallinity when compared to MBE grown ZnSe layers on GaAs (1 0 0) surfaces. The C–V depth profiling studies suggest the level of charge carrier concentration to be in the semiconducting region for these thin film materials. Photoluminescence studies were carried out in order to study the energy states in the band gap region and the results indicate the presence of less number of defect levels in comparison with MBE grown ZnSe layers. The best p–n junction devices fabricated with electrodeposited layers to date display a rectification factor of over five orders of magnitude at 1.0 V.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Nakamura, Phys. World Feb. (1998) 31.Google Scholar
  2. 2.
    A. L. Dawar, P. K. Shishodia and P. C. Mathur, J. Mater. Sci. Lett. 8 (1989) 561.Google Scholar
  3. 3.
    M. Ei Sherif, F. S. Terra and S. A. Khodier, J. Mater. Sci.: Mater. Electron. 7 (1996) 391.Google Scholar
  4. 4.
    C. Natarajan, M. Sharon, C. Levy-Clement and M. Neumann-Spallart, Thin Solid Films 237 (1994) 118.Google Scholar
  5. 5.
    V. Krishnan, D. Ham, K. K. Mishra and K. Rajeshwar, J. Electrochem. Soc. 139 (1992) 23.Google Scholar
  6. 6.
    A. P. Samantilleke, M. H. Boyle, J. Young and I. M. Dharmadasa, J. Mater. Sci.: Mater. Electron. 9 (1998) 289.Google Scholar
  7. 7.
    C. Wei and K. Rajeshwar, J. Electrochem. Soc. 139 (1992) L40.Google Scholar
  8. 8.
    I. M. Dharmadasa, A. P. Samantilleke, J. Young, M. H. Boyle, R. Bacewicz and A. Wolska, J. Mater. Sci.: Mater. Electron. 10 (1999) 441.Google Scholar
  9. 9.
    K. Singh and J. P. Rai, J. Mater. Sci. Lett. 4 (1985) 1401.Google Scholar
  10. 10.
    S. M. Mcgregor, I. M. Dharmadasa, I. Wadsworth and C. M. Care, Optical Mater. 6 (1996) 75.Google Scholar
  11. 11.
    C. D. Lockhande and S. H. Pawar, Phys. Stat. Sol. (a) 111 (1989) 18.Google Scholar
  12. 12.
    K. Singh and J. P. Rai, Phys. Stat. Sol. (a) 99 (1987) 257.Google Scholar
  13. 13.
    C. Natarajan, G. Nagomi and M. Sharon, Thin Solid Films 261 (1995) 44.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • A. P. Samantilleke
    • 1
  • I. M. Dharmadasa
    • 1
  • K. A. Prior
    • 2
  • K. L. Choy
    • 3
  • J. Mei
    • 3
  • R. Bacewicz
    • 4
  • A. Wolska
    • 4
  1. 1.Division of Applied PhysicsSheffield Hallam UniversitySheffieldUK
  2. 2.Department of PhysicsHeriot-Watt UniversityEdinburghUK
  3. 3.Department of MaterialsImperial College of Science, Technology and MedicineLondonUK
  4. 4.Institute of PhysicsWarsaw University of TechnologyWarsawPoland

Personalised recommendations