Advertisement

Journal of Mathematical Sciences

, Volume 108, Issue 2, pp 249–294 | Cite as

Smooth Manifolds over Local Algebras and Weil Bundles

  • V. V. Shurygin
Article

Keywords

Manifold Smooth Manifold Local Algebra Weil Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    B. N. Apanasov, Geometry of Discrete Groups and Manifolds [in Russian], Nauka, Moscow (1991).Google Scholar
  2. 2.
    M. F. Atiyah, "Complex analytic connections in fibre bundles," Trans. Amer. Math. Soc, 85, 181-207 (1957).Google Scholar
  3. 3.
    I. V. Bel'ko, "Atiyah-Molino class of a fiber Lie algebroid," Dokl. Akad. Nauk Belarusi, 37, No. 5, 16-18 (1993).Google Scholar
  4. 4.
    I. N. Bernshtein and B. I. Rozenfel'd, "Homogeneous spaces of infinite-dimensional Lie algebras and characteristic classes of foliations," Usp. Mat. Nauk, 28, No. 4, 103-138 (1973).Google Scholar
  5. 5.
    R. A. Blumenthal and J. J. Hebda, "Ehresmann connections for foliations," Indiana Math. J., 33, No. 4, 597-612 (1984).Google Scholar
  6. 6.
    R. A. Blumenthal and J. J. Hebda, "Complementary distributions which preserve the leaf geometry and applications to totally geodesic foliations," Quart. J. Math., 35, No. 4, 597-612 (1984).Google Scholar
  7. 7.
    R. A. Blumenthal and J. J. Hebda, "An analogue of the holonomy bundle for a foliated manifold," Tôhoku Math. J., 40, No. 2, 189-197 (1988).Google Scholar
  8. 8.
    A. V. Boyarshinova, "On the space of essential infinitesimal deformations," Izv. Vuzov, Mat., No. 8, 3-12 (1997).Google Scholar
  9. 9.
    A. V. Boyarshinova, "On the space of essential infinitesimal deformations of a manifold over the algebra of k-plural numbers," In: Tr. Geom. Sem., No. 23, Kazan Univ., Kazan (1997), pp. 7-21.Google Scholar
  10. 10.
    N. Bourbaki, Algebra, Chapter X. Homological Algebra [Russian translation], Nauka, Moscow (1987).Google Scholar
  11. 11.
    F. Brickell and R. S. Clark, "Integrable almost tangent structures," J. Differ. Geom., 9, No. 4, 557-563 (1974).Google Scholar
  12. 12.
    M. Crampin, "Defining Euler-Lagrange fields in terms of almost tangent structures," Phys. Lett., 97A, 466-468 (1983).Google Scholar
  13. 13.
    M. Crampin and G. Thompson, "Affine bundles and integrable almost tangent structures," Math. Proc. Cambridge Phil. Soc., 98, 61-71 (1985).Google Scholar
  14. 14.
    P. Dazord and G. Hector, "Integration symplectique des variét´es de Poisson totalement asphériques," In: Symplectic Geometry, Groupoids, and Integrable Systems. Séminaire Sud Rhodanien à Berkeley, 1989, Springer Math. SKIP 20 (1991), pp. 38-72.Google Scholar
  15. 15.
    S. De Filippo, G. Landi, G. Marmo, and G. Vilasi, "Tensor fields defining a tangent bundle structure," Ann. Inst. H. Poincaré, 50, No. 2, 205-218 (1989).Google Scholar
  16. 16.
    A. Dold, Lectures on Algebraic Topology [Russian translation], Mir, Moscow (1976).Google Scholar
  17. 17.
    M. Doupovec and I. Kolář, "Natural affinors on time-dependent Weil bundles," Arch. Math., 27b, 205-209 (1991).Google Scholar
  18. 18.
    B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry. Methods and Applications [in Russian], Nauka, Moscow (1979).Google Scholar
  19. 19.
    T. V. Duc, "Structures presque-transverse," J. Differ. Geom., 14, No. 2, 215-219 (1979).Google Scholar
  20. 20.
    D. J. Eck, "Product-preserving functors on smooth manifolds," J. Pure Appl. Algebra, 42, 133-140 (1986).Google Scholar
  21. 21.
    C. Ehresmann, "Les connexions in.nitésimales dans un espace fibré différentiable," In: Colloq. de Topologie, Bruxelles, 1950, Paris (1951), pp. 29-55.Google Scholar
  22. 22.
    C. Ehresmann, "Les prolongements d'une variété différentiable, I. Calcul des jets, prolongement principal," C. R. Acad. Sci., 233, No. 11, 598-600 (1951).Google Scholar
  23. 23.
    C. Ehresmann, "Les prolongements d'une variété différentiable, II. L'espace des jets d'ordre r de Vn dans Vm," C. R. Acad. Sci., 233, No. 15, 777-779 (1951).Google Scholar
  24. 24.
    C. Ehresmann, "Extension du calcul des jets aux jets non holonomes," C. R. Acad. Sci., 239, No. 25, 1762-1764 (1954).Google Scholar
  25. 25.
    C. Ehresmann, "Sur les connexions d'ordre supérior," In: Atti del V Congresso dell'Unione Math. Italiana, Roma (1955), pp. 326-328.Google Scholar
  26. 26.
    C. Ehresmann, "Applications de la notion de jet non holonome," C. R. Acad. Sci., 240, No. 4, 397-399 (1955).Google Scholar
  27. 27.
    T. I. Gaisin, "The Spencer complex for manifolds over algebras," In: Tr. Geom. Sem., No. 23, Kazan Univ., Kazan (1997), pp. 33-41.Google Scholar
  28. 28.
    A. El Kasimi-Alaoui, "Sur la cohomologie feuilletée," Compos. Math., 49, 195-215 (1983).Google Scholar
  29. 29.
    A. El Kasimi-Alaoui and A. Tihami, "Cohomologie bigradu´ee de certains feuilletages," Bull. Soc. Math. Belg., 38, Ser. B, 144-156 (1986).Google Scholar
  30. 30.
    L. E. Evtushik, "Differential connections and infinitesimal transformations of a prolonged pseudogroup," In: Tr. Geom. Sem., Vol. 2, All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1966), pp. 119-150.Google Scholar
  31. 31.
    L. E. Evtushik, Yu. G. Lumiste, N. M. Ostianu, and A. P. Shirokov, "Differential-geometric structures on manifolds," In: Progress in Science and Technology, Series on Problems in Geometry [in Russian], Vol. 9, All-Union Institute for Scientific and Technical Information, Akad. Nauk SSSR, Moscow (1979).Google Scholar
  32. 32.
    D. Fried, W. Goldman, and M. W. Hirsch, "Affine manifolds with nilpotent holonomy," Comment. Math. Helv., 56, No. 4, 487-523 (1981).Google Scholar
  33. 33.
    J. Gancarzewicz, W. Mikulski, and Z. Pogoda, "Lifts of some tensor fields and connections to product preserving functors," Nagoya Math. J., 135, 1-41 (1994).Google Scholar
  34. 34.
    V. Guillemin and S. Sternberg, "Deformation theory of pseudogroup structures," Mem. Amer. Math. Soc., No. 64 (1966).Google Scholar
  35. 35.
    J. L. Heitsch, "A cohomology for foliated manifolds," Comment. Math. Helv., 50, 197-218 (1975).Google Scholar
  36. 36.
    R. Hermann, "On the differential geometry of foliations," Ann. Math. Helv., 72, 445-457 (1960).Google Scholar
  37. 37.
    T. Inaba, The tangentially affine structures of Lagrangian foliations and the tangentially projective structures of Legendrian foliations, Preprint.Google Scholar
  38. 38.
    G. Kainz and P. Michor, "Natural transformations in differential geometry," Czech. Math. J., 37, 584-607 (1987).Google Scholar
  39. 39.
    P. W. Ketchum, "Analytic functions of hypercomplex variables," Trans. Amer. Math. Soc., 30, 641-667 (1928).Google Scholar
  40. 40.
    F. W. Kamber and P. Tondeur, "Foliated bundles and characteristic classes," In: Lect. Notes Math., Vol. 493, Springer (1975).Google Scholar
  41. 41.
    S. Kobayashi, "Manifolds over function algebras and mapping spaces," Tôhoku Math. J., 41, No. 2, 263-282 (1989).Google Scholar
  42. 42.
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry [Russian translation], Vol. 1, Nauka, Moscow (1981).Google Scholar
  43. 43.
    K. Kodaira, Complex Manifolds and Deformations of Complex Structures, Springer (1986).Google Scholar
  44. 44.
    I. Kolář, "On the torsion of spaces with connection," Czech. Math. J., 21, 124-136 (1971).Google Scholar
  45. 45.
    I. Kolář, "Covariant approach to natural transformations of Weil functors," Comment. Math. Univ. Carolinae, 27, 723-729 (1986).Google Scholar
  46. 46.
    I. Kolář, "An infinite dimensional motivation in higher order geometry," In: Proc. Conf. Diff. Geom. Appl. Aug. 28-Sept. 1, 1995, Brno, Czech Republic, Brno (1996), pp. 151-159.Google Scholar
  47. 47.
    I. Kolář, P. W. Michor, and J. Slovák, Natural Operations in Differential Geometry, Springer (1993).Google Scholar
  48. 48.
    A. Kriegl and P. W. Michor, "Product preserving functors of infinite dimensional manifolds," Arch. Math., 32, 289-306 (1996).Google Scholar
  49. 49.
    G. I. Kruchkovich, "Hypercomplex structures on manifolds, I," In: Tr. Sem. Vekt. Tens. Anal., No. 16, Moscow Univ., Moscow (1972), pp. 174-201.Google Scholar
  50. 50.
    G. I. Kruchkovich, "Hypercomplex structures on manifolds, II," In: Tr. Sem. Vekt. Tens. Anal., No. 17, Moscow Univ., Moscow (1974), pp. 218-227.Google Scholar
  51. 51.
    G. F. Laptev, "Main infinitesimal structures of higher order on a smooth manifolds," In: Tr. Geom. Sem., Vol. 1, All-Union Institute for Scientific and Technical Information, Akad. Nauk SSSR, Moscow (1966), pp. 139-189.Google Scholar
  52. 52.
    M. de León, I. Méndes, and M. Salgado, "Integrable p-almost tangent manifolds and tangent bundles of p 1-velocities," Acta Math. Hung., 58, Nos. 1-2, 45-54 (1991).Google Scholar
  53. 53.
    M. V. Losik, "On the reduction theorem for connections of higher order," In: Differential Geometry [in Russian], No. 5, Saratov Univ., Saratov (1980), pp. 53-64.Google Scholar
  54. 54.
    O. O. Luciano, "Categories of multiplicative functors and Weil's infinitely near points," Nagoya Math. J., 109, 67-108 (1988).Google Scholar
  55. 55.
    M. A. Malakhal'tsev, "An analog of Dolbo cohomologies for manifolds over the algebra of dual numbers," Izv. Vuzov, Mat., No. 11, 82-84 (1990).Google Scholar
  56. 56.
    M. A. Malakhal'tsev, "Structures of a manifold over the algebra of dual numbers on the torus," In: Tr. Geom. Sem., No. 22, Kazan Univ., Kazan (1994,), pp. 47-62.Google Scholar
  57. 57.
    M. A. Malakhal'tsev, "(X,G)-foliations," Izv. Vuzov, Mat., No. 7, 55-65 (1996).Google Scholar
  58. 58.
    M. A. Malakhal'tsev, "Godbillon-Vei classes of a one-dimensional manifold over a local algebra," In: Tr. Geom. Sem., No. 23, Kazan Univ., Kazan (1997), pp. 65-76.Google Scholar
  59. 59.
    Yu. I. Manin, Gauge Fields and Complex Geometry [in Russian], Nauka, Moscow (1984).Google Scholar
  60. 60.
    W. M. Mikulski, "Natural transformations of Weil functors into bundle functors," Rend. Circ. Mat. Palermo, Sér. 2, 22, 177-191 (1989).Google Scholar
  61. 61.
    W. M. Mikulski, "Product preserving bundle functors on fibered manifolds," Arch. Math., 32, 307-316 (1996).Google Scholar
  62. 62.
    A. S. Mishchenko, Vector Bundles and Their Applications [in Russian], Nauka, Moscow (1984).Google Scholar
  63. 63.
    P. Molino, "Propriétés cohomologiques et propriétés topologiques des feuilletages à connexion transverse projectable," Topology, 12, 317-325 (1973).Google Scholar
  64. 64.
    P. Molino, "Théorie des G-structure: le problème d'equivalence," In: Lect. Notes Math., Vol. 588, Springer (1977).Google Scholar
  65. 65.
    P. Molino, "Actions de groupes de Lie et presque-connexions," In: Lect. Notes Math., Vol. 484, Springer (1975), pp. 153-161.Google Scholar
  66. 66.
    P. Molino, Riemannian Foliations, Birkhäuser (1988).Google Scholar
  67. 67.
    A. Morimoto, "Liftings of some types of tensor fields and connections to tangent bundles of P r-velocities," Nagoya Math. J., 40, 13-31 (1970).Google Scholar
  68. 68.
    A. Morimoto, "Prolongation of connections to bundles of infinitely near points," J. Differ. Geom., 11, No. 4, 479-498 (1976).Google Scholar
  69. 69.
    A. P. Norden, "On the parallel translation of dual vectors," Uch. Zap. Kazan Univ., 110, No. 3, 95-103 (1950).Google Scholar
  70. 70.
    A. P. Norden, "Bi-axial geometry and its generalization," In: Proc. 4th All-Russian Math. Session [in Russian], Vol. 2, Leningrad (1964), pp. 236-243.Google Scholar
  71. 71.
    A. P. Norden, "On the structure of a connection on the line manifold of a non-Euclidean space," Izv. Vuzov, Mat., No. 12, 84-94 (1972).Google Scholar
  72. 72.
    E. Okassa, "Prolongements des champs de vecteur à des variétés de points proches," C. R. Acad. Sci., Sér. 1, 300, No. 6, 173-176 (1985).Google Scholar
  73. 73.
    E. Okassa, "Relévements des structures symplectiques et pseudo-Riemanniennes à des variétés de points proches," Nagoya Math. J., No. 115, 63-71 (1989).Google Scholar
  74. 74.
    N. M. Ostianu, "Stepwise fiber spaces," In: Tr. Geom. Sem., Vol. 5, All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1974), pp. 259-309.Google Scholar
  75. 75.
    M. H. Papatriantafillou, "Partitions of unit on A-manifolds," Int. J. Math., 9, No. 7, 877-883 (1998).Google Scholar
  76. 76.
    M. H. Papatriantafillou, "Connections on A-bundles," In: Proc. Symp. New Developments in Differential Geometry, Budapest 1996, Kluwer Academic, Dordrecht (1999) pp. 307-316.Google Scholar
  77. 77.
    L.-N. Patterson, "Connexions and prolongations," Can. J. Math., 27, No. 4, 766-791 (1975).Google Scholar
  78. 78.
    P. Pierce, Associative Algebras [Russian translation], Mir, Moscow (1986).Google Scholar
  79. 79.
    Z. Pogoda, "Horizontal lifts and foliations," Rend. Circ. Mat. Palermo, Ser. 2, 38, No. 21, 279-289 (1989).Google Scholar
  80. 80.
    P. K. Rashevskii, "Scalar field in a fiber space," In: Tr. Sem. Vekt. Tens. Anal., No. 6, Moscow Univ., Moscow (1948), pp. 225-248.Google Scholar
  81. 81.
    B. L. Reinhart, Differential Geometry of Foliations. The Fundamental Integrability Problem, Springer (1983).Google Scholar
  82. 82.
    G. Scheffers, "Verallgemeinerung der Grundlagen der gewöhnlichen komplexen Funktionen," Berichte Sächs. Akad. Wiss., 45, 828-842 (1893).Google Scholar
  83. 83.
    B. N. Shapukov, "Connections on vector bundles," In: Progress in Science and Technology, Series on Problems in Geometry [in Russian], Vol. 15, All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1985), pp. 61-95.Google Scholar
  84. 84.
    A. P. Shirokov, "On the theory of spaces defined by commutative algebras," Uch. Zap. Kazan Univ., 125, No. 1, 165-182 (1965).Google Scholar
  85. 85.
    A. P. Shirokov, "On a certain type of G-structure definned by algebras," In: Tr. Geom. Sem., Vol. 1, All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1966), pp. 425-456.Google Scholar
  86. 86.
    A. P. Shirokov, "On the problem on pure tensors and invariant subspaces in manifolds with almost algebraic structure," In: Proc. Dept. Geom. [in Russian], No. 2, Kazan Univ., Kazan (1966), pp. 81-89.Google Scholar
  87. 87.
    A. P. Shirokov, "A note on structures in tangent bundles," In: Tr. Geom. Sem., Vol. 5, All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1974), pp. 311-318.Google Scholar
  88. 88.
    A. P. Shirokov, "Geometry of tangent bundles and spaces over algebras," In: Progress in Science and Technology, Series on Problems in Geometry [in Russian], Vol. 12, All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1981), pp. 61-95.Google Scholar
  89. 89.
    V. V. Shurygin, "On the theory of differential groups of higher order," Izv. Vuzov, Mat., No. 11, 77-81 (1984).Google Scholar
  90. 90.
    V. V. Shurygin, "Equations of parallel translation of an A-jet," Izv. Vuzov, Mat., No. 9, 78-80 (1987).Google Scholar
  91. 91.
    V. V. Shurygin, "Jet bundles as manifolds over algebras," In: Progress in Science and Technology, Series on Problems in Geometry [in Russian], Vol. 19, All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1987), pp. 3-22.Google Scholar
  92. 92.
    V. V. Shurygin, "Structural equations of the equation of the bundle of A-affine frames," Izv. Vuzov, Mat., No. 12, 78-80 (1989).Google Scholar
  93. 93.
    V. V. Shurygin, "Higher-order connections and lifts of fields of geometric objects," Izv. Vuzov, Mat., No. 5, 96-104 (1992).Google Scholar
  94. 94.
    V. V. Shurygin, "Manifolds over algebras and their applications in the geometry of jet bundles," Usp. Mat. Nauk, 48, No. 2, 75-106 (1993).Google Scholar
  95. 95.
    V. V. Shurygin, "On the category of manifolds over algebras," In: Tr. Geom. Sem., No. 22, Kazan Univ., Kazan (1994), pp. 107-122.Google Scholar
  96. 96.
    V. V. Shurygin, "On a certain geometric property of an object of torsion of a higher-order connection," Izv. Vuzov, Mat., No. 2, 71-74 (1994).Google Scholar
  97. 97.
    V. V. Shurygin, "Ehresmann connection for the canonical foliation over a local algebra," Mat. Zametki, 59, No. 2, 303-310 (1996).Google Scholar
  98. 98.
    V. V. Shurygin, "On cohomologies of manifolds over local algebras," Izv. Vuzov, Mat., No. 9, 74-88 (1996).Google Scholar
  99. 99.
    V. V. Shurygin, "Atiah-Molino classes of a smooth manifold over a local algebra A as obstructions to the prolongation of transversal connections to A-smooth connections, In: Tr. Geom. Sem., No. 23, Kazan Univ., Kazan (1997), pp. 199-210.Google Scholar
  100. 100.
    V. V. Shurygin, "Smooth connections and horizontal distributions on manifolds over local algebras," In: Proc. Conf. Diff. Geom. Appl. Aug. 28-Sept. 1, 1995. Brno, Czech Republic, Brno (1996), pp. 309-319.Google Scholar
  101. 101.
    V. V. Shurygin, "Structure of smooth mappings over Weil algebras and the category of manifolds over algebras," Lobachevskii J. Math., 5 (1999); www.ksn.ru/tat en/science/ljmGoogle Scholar
  102. 102.
    E. P. Shustova, "On the interrelation of geometries of the tangent bundle of the third order and the Whitney sum," In: Tr. Geom. Sem., No. 23, Kazan Univ., Kazan (1997), pp. 211-221.Google Scholar
  103. 103.
    J. Slovàk, "Prolongations of connections and sprays with respect to Weil functors," Rend. Circ. Mat. Palermo, 36, No. 14, 143-156 (1987).Google Scholar
  104. 104.
    E. Study, Geometrie der Dymamen, Leipzig (1902).Google Scholar
  105. 105.
    A. Ya. Sultanov, "Decomposition of the jet bundle of differentiable mappings into the Whitney sum of tangent bundles," In: Tr. Geom. Sem., No. 23, Kazan Univ., Kazan (1997), pp. 139-148.Google Scholar
  106. 106.
    A. Ya. Sultanov, "Prolongation of tensor fields and connections to Weil bundles," Izv. Vuzov, Mat., No. 9, 81-90 (1999).Google Scholar
  107. 107.
    G. Thompson and U. Schwardmann, "Almost tangent and cotangent structures in the large," Trans. Amer. Math. Soc., 327, No. 1, 313-327 (1991).Google Scholar
  108. 108.
    W. P. Thurston, The Geometry and Topology of 3-Manifolds, Princeton Univ. Lecture Notes (1978/1979).Google Scholar
  109. 109.
    I. Vaisman, "Variétés riemanniennes feuilletées," Czech. Math. J., 21, No. 1, 46-75 (1971).Google Scholar
  110. 110.
    I. Vaisman, "d f-Cohomology of Lagrangian foliations," Monat. Math., 106, No. 3, 221-244 (1988).Google Scholar
  111. 111.
    V. V. Vagner, "Theory of differential objects and foundations of differential geometry," In: O. Veblen and J. Whitehead, Foundations of Differential Geometry [Russian translation], IL, Moscow (1949).Google Scholar
  112. 112.
    V. V. Vagner, "Theory of a composition manifold," In: Tr. Sem. Vekt. Tens. Anal., No. 8, Moscow Univ., Moscow (1950), pp. 11-72.Google Scholar
  113. 113.
    V. V. Vagner, "Algebraic theory of differential groups," Dokl. Akad. Nauk SSSR, 80, No. 6, 845-848 (1951).Google Scholar
  114. 114.
    V. V. Vagner, "Algebraic theory of tangent spaces of higher order," In: Tr. Sem. Vekt. Tens. Anal., No. 10, Moscow Univ., Moscow (1956), pp. 31-88.Google Scholar
  115. 115.
    J. Vanžura, "On the geometry and topology of manifolds over algebras," Weiterbildungszentr. Math. Kybern. Rechentechn., Sect. Math., 28, 133-136 (1978).Google Scholar
  116. 116.
    O. Veblen and J. Whitehead, Foundations of Differential Geometry [Russian translation], IL, Moscow (1949). 293Google Scholar
  117. 117.
    V. V. Vishnevskii, "On a certain property of analytic functions over algebras and its applications to the study of complex structures in Riemannian spaces," In: Proc. Dept. Geom. [in Russian], No. 2, Kazan Univ., Kazan (1966), pp. 5-12.Google Scholar
  118. 118.
    V. V. Vishnevskii, "Polynomial algebras and affinor structures," In: Proc. Dept. Geom. [in Russian], No. 6, Kazan Univ., Kazan (1971), pp. 22-35.Google Scholar
  119. 119.
    V. V. Vishnevskii, "On real realizations of tensor operations in spaces over algebras," Izv. Vuzov, Mat., No. 5, 62-65 (1974).Google Scholar
  120. 120.
    V. V. Vishnevskii, "Manifolds over plural numbers and semi-tangent structures," In: Progress in Science and Technology, Series on Problems of Geometry [in Russian], Vol. 20, All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1988), pp. 35-75.Google Scholar
  121. 121.
    V. V. Vishnevskii, "Lifts of differential-geometric structures to semi-tangent bundles of higher order," Izv. Vuzov, Mat., No. 5, 16-24 (1995).Google Scholar
  122. 122.
    V. V. Vishnevskii, A. P. Shirokov, and V. V. Shurygin, Spaces over Algebras [in Russian], Kazan Univ., Kazan (1984).Google Scholar
  123. 123.
    V. S. Vladimirov and I. V. Volovich, "Superanalysis. I. Differential calculus," Teor. Mat. Fiz., 59, No. 1, 3-27 (1984).Google Scholar
  124. 124.
    R. D. Wagner, "The generalized Laplace equations in a function theory for commutative algebras," Duke Math. J., 15, 455-461 (1948).Google Scholar
  125. 125.
    A. Weil, "Théorie des points proches sur les variététes différentiables," In: Colloq. Int. Centre nat. Rech. Sci., 52, Strasbourg (1953), pp. 111-117.Google Scholar
  126. 126.
    R. Wells, Differential Calculus on Complex Manifolds [Russian translation], Mir, Moscow (1976).Google Scholar
  127. 127.
    H. Winkelnkemper, "The graph of a foliation," Ann. Glob. Anal. Geom., 1, 51-75 (1983).Google Scholar
  128. 128.
    R. Woblak, "Normal bundles of foliations of order r," Demonstr. Math., 18, No. 4, 977-994 (1985).Google Scholar
  129. 129.
    R. Woblak, "Graphs, Ehresmann connections, and vanishing cycles," In: Proc. Conf. Diff. Geom. Appl. Aug. 28-Sept. 1, 1995, Brno, Czech Republic, Brno (1996), pp. 345-352.Google Scholar
  130. 130.
    P. C. Yuen, "Prolongements de G-structures aux espaces de prolongement," C. R. Acad. Sci., 270, No. 3, A538-A540 (1970).Google Scholar
  131. 131.
    P. C. Yuen, "Sur la notion d'une G-structure géométrique et les A-prolongements de G-structures," C. R. Acad. Sci., 270, No. 24, A1589-A1592 (1970).Google Scholar
  132. 132.
    N. I. Zhukova, "Graph of a foliation with an Ehresmann connection and stability of leaves," Izv. Vuzov, Mat., No. 2, 79-81 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • V. V. Shurygin

There are no affiliations available

Personalised recommendations