Advertisement

Inflammation

, Volume 25, Issue 5, pp 293–300 | Cite as

Cloning and Relative Expression Analysis of Rat Stromal Cell Derived Factor-1 (SDF-1): SDF-1 α mRNA Is Selectively Induced in Rat Model of Myocardial Infarction

  • Kodandaram Pillarisetti
  • Shalley K. Gupta
Article

Abstract

Stromal cell derived factor-1 (SDF-1) is a member of the non-ELR subfamily of CXC chemokines. SDF-1 and its receptor, CXCR4, are essential for cardiogenesis, hematopoiesis, and vasculogenesis during embryonic development, in addition to involvement in chemotaxis of leukocyte subsets and endothelial cells. In order to study SDF-1 expression in a rat model of myocardial infarction, we cloned and functionally expressed the rat SDF-1α orthologue. Rat SDF-1α is highly conserved, with >95% identity to its known human, feline, and murine counterparts. Constitutive expression of SDF-1 mRNA was observed in heart, brain, liver, and kidney. Significantly, apart from the SDF-1α and β splice variants, expression of the recently identified SDF-1γ was uniquely abundant in the heart. SDF-1α mRNA was selectively induced in permanent coronary artery occlusion model of myocardial infarction in rat, while SDF-1γ remained unchanged. Such modulation of SDF-1α mRNA expression may be indicative of its role in the inflammatory events in cardiovascular disease.

chemokines heart rat SDF-1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Baggiolini, M., B. Dewald, and B. Moser. 1997. Human chemokines: an update. Annu. Rev. Immunol. 15:675–705.Google Scholar
  2. 2.
    Rollins, B. J. 1997. Chemokines. Blood 90:909–928.Google Scholar
  3. 3.
    Zlotnik, A., J. Morales, and J. A. Hedrick. 1999. Recent advances in chemokines and chemokine receptors. Crit. Rev. Immunol. 19:1–47.Google Scholar
  4. 4.
    Tashiro, K., H. Tada, R. Heilker, M. Shirozu, T. Nakano, and T. Honjo. 1993. Signal sequence trap: a cloning strategy for secreted proteins and Type 1 membrane proteins. Science 261:600–603.Google Scholar
  5. 5.
    Nagasawa, T., H. Kikutani, and T. Kishimoto. 1994. Molecular cloning and structure of a pre-B-cell growth stimulating factor. Proc. Nat. Acad. Sci. USA 91:2305–2309.Google Scholar
  6. 6.
    Oberlin, E., A. Amara, F. Bachelerie, C. Bessia, J.-L. Virelizier, F. Arenzana-Seisdedos, O. Schwartz, J.-L. Heart, I. Clark-Lewis, D. F. Legler, M. Loetscher, M. Baggiolini, and B. Moser. 1996. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature (London) 382:833–835.Google Scholar
  7. 7.
    Bleul, C. C., R. C. Fuhlbrigge, J. M. Casanovas, A. Aiuti, and T. A. Springer. 1996. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J. Exp. Med. 184:1101–1109.Google Scholar
  8. 8.
    Gupta, S. K., P. G. Lysko, K. Pillarisetti, E. Ohlstein, and J. M. Stadel. 1998. Chemokine receptors in human endothelial cells. Functional expression of CXCR4 and its transcriptional regulation by inflammatory cytokines. J. Biol. Chem. 273:4282–4287.Google Scholar
  9. 9.
    Gupta, S. K., K. Pillarisetti, and P. G. Lysko. 1999. Modulation of CXCR4 expression and SDF-1a functional activity during differentiation of human monocytes and macrophages. J. Leuk. Biol. 66:135–143.Google Scholar
  10. 10.
    Shirozu, M., T. Nakano, J. Inazawa, K. Tashori, H. Tada, T. Shinohara, and T. Honjo. 1995. Structure and chromosomal localization of the human stromal cell derived factor-1 (SDF-1) gene. Genomics 28:495–500.Google Scholar
  11. 11.
    Nagasawa, T., S. Hirota, K. Tachibana, N. Takakura, S. Nishikawa, Y. Kitamura, N. Yoshida, H. Kikutani, and T. Kishimoto. 1996. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature (London) 382:635–638.Google Scholar
  12. 12.
    Tachibana, K., S. Hirota, H. Iizasa, H. Yoshida, K. Kawabata, Y. Kataoka, Y. Kitamura, K. Matsushima, N. Yoshida, S. Nishikawa, T. Kishimoto, and T. Nagasawa. 1998. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature (London) 393:591–594.Google Scholar
  13. 13.
    Zou, Y.-R., A. H. Kottman, M. Kuroda, I. Taniuchi, and D. R. Littman. 1998. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature (London) 393:595–599.Google Scholar
  14. 14.
    Ma, Q., D. Jones, P. R. Borghesani, R. A. Segal, T. Nagasawa, T. Kishimoto, R. T. Bronson, and T. A. Springer. 1998. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4-and SDF-1-deficient mice. Proc. Nat. Acad. Sci USA 95:9448–9453.Google Scholar
  15. 15.
    Bause, E. 1983. Structural requirements of N-glycosolation of proteins: Studies with proline peptides as conformational probes. Biochem. J. 209:331–336.Google Scholar
  16. 16.
    Hansen, J. E., O. Lund, K. Rapacki, and S. Brunak. 1997. O-GLYCBASE version 2.0: a revised database of O-glycosylated proteins. Nucl. Acids Res. 25:278–282.Google Scholar
  17. 17.
    Salcedo, R., K. Wasserman, H. A. Young, M. C. Grimm, O. M. Howard, M. R. Anver, H. K. Kleinman, W. J. Murphy, and J. J. Oppenheim. 1999. Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: in vivo neovascularization induced by stromalderived factor-1 alpha. Am. J. Pathol. 154:1125–1135.Google Scholar
  18. 18.
    Keane, M. P., and R. M. Strieter. 1999. The role of CXC chemokines in the regulation of angiogenesis. Chem. Immunol. 72:86–101.Google Scholar
  19. 19.
    Nishimura, Y., T. Miyazawa, Y. Ikeda, Y. Izumiya, K. Nakamura, J. S. Cai, E. Sato, M. Kohomoto, and T. Mikami. 1998. Molecular cloning and sequencing of feline stromal cell-derived factor-1 alpha and beta. Eur. J. Immunogenet. 25:303–305.Google Scholar
  20. 20.
    Gleichmann, M., C. Gillen, M. Czardybon, F. Bosse, R. Greiner-Petter., J. Auer, and H. W. Muller. 2000. Cloning and characterization of SDF-1g, a novel SDF-1 chemokine transcript with developmentally regulated expression in the nervous system. Eur. J. Neurosci. 12:1857–1866.Google Scholar
  21. 21.
    Moepps, B., R. Frodl, H. Rodewald, M. Baggiolini, and P. Gierschik. 1997. Two murine homologues of the human chemokine receptor CXCR4 mediating stromal cell-derived factor 1 alpha activation of Gi2 are differentially expressed in vivo. Eur. J. Immunol. 27:2102–2112.Google Scholar
  22. 22.
    Jiang, W., P. Zhou, S. M. Kahn, N. Tomita, M. D. Johnson, and I. B. Weinstein. 1994. Molecular cloning of the TPAR1, a gene whose expression is repressed by the tumor promoter 12-0-tetradecanoylphorbol 13-acetate (TPA). Exp. Cell Res. 215:284–293.Google Scholar
  23. 23.
    Gupta, S. K., and K. Pillarisetti. 1999. CXCR4:Lo Molecular cloning and functional expression of a novel human CXCR4 splice variant. J. Immunol. 163:2368–2372.Google Scholar
  24. 24.
    Heesen, M., M. A. Berman, U. E. Hopken, N. P. Gerard, and M. E. Dorf. 1997. Alternate splicing of mouse fusin/CXC chemokine receptor-4: stromal cell-derived factor-1 alpha is a ligand for both CXC chemokine receptor-4 isoforms. J. Immunol. 158:3561–3564.Google Scholar
  25. 25.
    Kruys, V., O. Marinix, G. Shaw, J. Deschamps, and G. Huez. 1989. Translational blockade imposed by cytokine-derived UArich ssequences. Science 245:852–855.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Kodandaram Pillarisetti
    • 1
  • Shalley K. Gupta
    • 1
  1. 1.Department of Cardiovascular BiologySmithKline Beecham PharmaceuticalsKing of Prussia

Personalised recommendations