The effect of polyimide passivation on the electromigration of Cu multilayer interconnections

  • Jiann-Shan Jiang
  • Bi-Shiou Chiou


Electromigration damage (EMD) is one of the major causes for the failures of interconnect. In this study, the electromigration (EM) of Cu multilayer (TiWN/Cu/TiWN) with polyimide passivation is investigated with an isothermal resistance change method. The EM measurements were carried out on a wafer level at various temperatures (170–230 °C) and current densities (2.28–4.0\( MA/cm^2 \)). The activation energy for passivated Cu multilayer is larger than that of the unpassivated ones. The lifetime of passivated specimens are from two to 16 times those of the unpassivated ones. Resistance oscillation, which is attributed to the formation and closing of Cu gap, is observed during EM test. The TiWN interlayer helps to maintain the electrical continuity when a local Cu gap is formed. Hence, the lifetime of Cu metallization is further enhanced by the presence of the interlayer. Copper multilayer interconnect has better EMD resistance than Cu monolayer interconnect does.


Copper Activation Energy Electronic Material Polyimide Resistance Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. Mcpherson, H. A. Le and C. D. Grass, Microelectron. Reliab. 37 (1997) 1469.Google Scholar
  2. 2.
    J. Tao, N. W. Cheung, C. Hu, H. Kang and S. S. Wong, IEEE Electron Device Lett. 13 (1992) 433.Google Scholar
  3. 3.
    J. Tao, N. W. Cheung and C. Hu, ibid. 14 (1993) 249.Google Scholar
  4. 4.
    H. W. Wang, B. S. Chiou and J. S. Jiang, J. Mater. Sci.: Mater. Electronics, 10 (1995) 267.Google Scholar
  5. 5.
    H. W. Wang and B. S. Chiou, ibid. 11 (2000) 17.Google Scholar
  6. 6.
    J. S. Jiang and B. S. Chiou, Int. J. Microcircuits Electron. Packag. 22 (1999) 395.Google Scholar
  7. 7.
    J. S. Jiang and B. S. Chiou, ibid. 23 (2000) 501.Google Scholar
  8. 8.
    C. K. Hu, K. Y. Lee, K. L. Lee, C. Cabral, Jr. E. G. Colgan and C. Stanis, J. Electrochem. Soc. 143 (1996) 1001.Google Scholar
  9. 9.
    A. Scorgoni, I. Demunari, R. Balboni, F. Tamarri, A. Garulli and F. Fantini, Microelectron. Reliab. 36 (1996) 1691.Google Scholar
  10. 10.
    J. Tao, N. W. Cheung and C. Hu, IEEE. Trans. Electron Devices 43 (1996) 1819.Google Scholar
  11. 11.
    T. Nitta, T. Ohmi, T. Hsohi, S. Sakai, K. Sakaibara, S. Imai and T. Shibata, J. Electrochem. Soc. 140 (1993) 1131.Google Scholar
  12. 12.
    C. K. Hu and J. M. E. Harper, Mater. Chem. Phys. 52 (1998) 5.Google Scholar
  13. 13.
    R. Rosenberg and L. Berenhaum, Appl. Phys. Lett. 12 (1968) 201.Google Scholar
  14. 14.
    M. Shatzkes and J. R. Lloyd, J. Appl. Phys. 59 (1986) 3890.Google Scholar
  15. 15.
    R. E. Hummel, R. T. Dehoff and H. J. Geier, J. Phys. and Chem. Solids 37 (1976) 73.Google Scholar
  16. 16.
    R. A. Sigsbee, J. Appl. Phys. 44 (1973) 2533.Google Scholar
  17. 17.
    C. K. Hu and B. Luther, Mater. Chem. Phys. 41 (1995) 1.Google Scholar
  18. 18.
    T. Fukada, T. Mori, Y. Toyoda, M. Hasegawa, K. Namba, and K. Ogata, Appl. Surf. Sci. 91 (1995) 227.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Jiann-Shan Jiang
    • 1
  • Bi-Shiou Chiou
    • 1
  1. 1.Department of Electronics Engineering and Institute of ElectronicsNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations