Boundary-Layer Meteorology

, Volume 102, Issue 1, pp 83–116 | Cite as

Turbulence Structures Over The Marginal Ice Zone Under Flow Parallel To The Ice Edge: Measurements And Parameterizations

  • C. Drüe
  • G. Heinemann


Three aircraft-based studies of boundary-layer fronts (BLFs) werecarried out during the experiment KABEG in April 1997 near thesea-ice edge over the Davis Strait. The boundary-layer flow wasparallel to the ice edge and hence two independent turbulent regimescould develop in an identical synoptic framework, separated by thefrontal zone along the ice edge. The zone of strongest crosswindhorizontal gradients was typically 20 km wide, while the downstreamscale of the BLF was observed to be several hundreds of kilometres.For two of the three cases the investigation of turbulence structureswas possible and the results are given herein.Horizontal and vertical profiles of turbulent fluxes and other turbulentquantities are presented. A spectral analysis reveals the coexistence ofsmall-scale turbulence with roll motions. These roll motions can behidden or can be visible as cloud streets. The associated transportmechanisms are highly relevant for the choice of suitable averagingintervals for turbulent flux calculations and model validation.Parameterizations for the vertical velocity variance, countergradienttransport, sea surface roughness and eddy diffusivity are evaluatedand compared for this baroclinic strong-wind convective boundary-layerenvironment. Analogously, drag coefficients and bulk transfer coefficientsare derived from measurements.

Aircraft measurement Arctic boundary layer Model parameterization Turbulence structure Validation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayotte, K.W., Sullivan, P. P., Andrén, A., Doney, S. C., Holtslag, A. A.M., Large, W.G., Mcwilliams, J. C., Moeng, C.-H., Otte, M. J., Tribbia, J. J., and Wyngaard, J. C.: 1996, 'An Evaluation of Neutral and Convective Planetary Boundary-Layer Parameterizations Relative to Large Eddy Simulations', Boundary-Layer Meteorol. 79, 131-175.Google Scholar
  2. Blackadar, A. K.: 1962, 'The Vertical Distribution of Wind and Turbulent Exchange in a Neutral Atmosphere', J. Geophys. Res. 67, 3095-3102.Google Scholar
  3. Brümmer, B.: 1996, 'Boundary-Layer Modification in Wintertime Cold-Air Outbreaks from the Arctic Sea Ice', Boundary-Layer Meteorol. 80, 109-125.Google Scholar
  4. Brümmer, B.: 1997, 'Boundary Layer Mass, Water, and Heat Budgets in Wintertime Cold-Air Outbreaks from the Arctic Sea Ice', Mon. Wea. Rev. 125, 1824-1837.Google Scholar
  5. Chamberlain, A. C.: 1983, 'Roughness Length of Sea, Sand, and Snow', Boundary-Layer Meteorol. 25, 405-409.Google Scholar
  6. Charnock, H.: 1955, 'Wind Stress over a Water Surface', Quart. J. Roy. Meteorol. Soc. 81, 639.Google Scholar
  7. Deardorff, J. W.: 1972, 'Theoretical Expression for the Countergradient Vertical Heatflux', J. Geophys. Res. 77, 5900-5904.Google Scholar
  8. Drüe, C. and Heinemann, G.: 2001, 'Airborne Investigation of Arctic Boundary Layer Fronts over the Marginal Ice Zone of the Davis Strait', Boundary-Layer Meteorol., in press.Google Scholar
  9. Dyer, A. J. and Hicks, B. B.: 1970, 'Flux-Gradient Relationships in the Constant Flux Layer', Quart. J. Roy. Meteorol. Soc. 96, 715-721.Google Scholar
  10. Fett, R. W.: 1989, 'Polar Low Development Associated with Boundary Layer Fronts in the Greenland, Norwegian and Barents Seas', in P. F. Twitchell, E. A. Rasmussen, and K. L. Davidson (eds.), Polar and Arctic Lows, A. Deepak Publishing, 421 pp.Google Scholar
  11. Garratt, J. R.: 1977, 'Review of Drag Coefficients over Oceans and Continents', Mon. Wea. Rev. 105, 915-929.Google Scholar
  12. Hartmann, J., Borchert, A., Freese, D., Kottmeier, Ch., Nagel, D., and Reuter, A.: 1996, 'Radiation and Eddy Flux Experiment 1995 (REFLEX III)', Reports on Polar Research 218, Alfred-Wegener-Institut für Polarforschung, Bremerhaven, Germany, 62 pp.Google Scholar
  13. Hartmann, J., Kottmeier, Ch., and Wamser, Ch.: 1992, 'Radiation and Eddy Flux Experiment 1991 (REFLEX I)', Reports on Polar Research 105, Alfred-Wegener-Institut für Polarforschung, Bremerhaven, Germany, 72 pp.Google Scholar
  14. Heinemann, G.: 1996, 'On the Development of Wintertime Meso-Scale Cyclones near the Sea Ice Front in the Arctic and Antarctic', Global Atmos.-Ocean Syst. 4, 89-123.Google Scholar
  15. Heinemann, G.: 1998, 'Katabatic Wind and Boundary Layer Front Experiment around Greenland ("KABEG '97")', Reports on Polar Research 269, Alfred-Wegener-Institut für Polarforschung, Bremerhaven, Germany, 93 pp.Google Scholar
  16. Holtslag, A. A. M. and Moeng, C.-H.: 1991, 'Eddy Diffusivity and Countergradient Transport in the Convective Atmospheric Boundary Layer', J. Atmos. Sci. 48, 1690-1698.Google Scholar
  17. Hunt, J. C. R., Kaimal, J. C., and Gaynor, J. E.: 1988, 'Eddy Structure in the Convective Boundary Layer-New Measurements and New Concepts', Quart. J. Roy. Meteorol. Soc. 114, 827-858.Google Scholar
  18. Joffre, S. M.: 1982, 'Momentum and Heat Transfers in the Surface Layer over a Frozen Sea', Boundary-Layer Meteorol. 24, 212.Google Scholar
  19. Kaimal, J. C. and Finnigan, J. J.: 1994, Atmospheric Boundary Layer Flows, Oxford University Press, Oxford, 289 pp.Google Scholar
  20. Kaimal, J. C., Wyngaard, J. C., Haugen, D. A., Coté, O. R., Izumi, Y., Caughey, S. J., and Readings, C. J.: 1976, 'Turbulence Structure in the Convective Boundary Layer', J. Atmos. Sci. 33, 2152-2169.Google Scholar
  21. Kottmeier, Ch., Hartmann, J., Wamser, Ch., Borchert, A., Lüpkes, Ch., Freese, D., and Cohrs, W.: 1994, 'Radiation and Eddy Flux Experiment (REFLEX II)', Reports on Polar Research 133, Alfred-Wegener-Institut für Polarforschung, Bremerhaven, Germany, 62 pp.Google Scholar
  22. Lenschow, D. W., Wyngaard, J. C., and Pennell, W. T.: 1980, 'Mean Fields and Second Moment Budgets in a Baroclinic Convective Boundary Layer', J. Atmos. Sci. 37, 1313-1326.Google Scholar
  23. Louis, J.-F.: 1979, 'A Parametric Model of Vertical Eddy Fluxes in the Atmosphere', Boundary-Layer Meteorol. 17, 187-202.Google Scholar
  24. Lüpkes, C. and Heinke-Schlünzen, K.: 1996, 'Modeling the Arctic Boundary-Layer with Different Turbulence Parameterizations', Boundary-Layer Meteorol. 79, 107-130.Google Scholar
  25. Shapiro, M. A. and Fedor, L. S.: 1989, 'A Case Study of an Ice-Edge Boundary Layer Front and Polar Low Development over the Norwegian an Barents Seas', in P. F. Twitchell, E. A. Rasmussen, and K. L. Davidson (eds.), Polar and Arctic Lows, A. Deepak Publishing, 421 pp.Google Scholar
  26. Shaw, W. J., Pauley, R. L., Gobel, T. M., and Radke, L. F.: 1991, 'A Case Study of Atmospheric Boundary Layer Mean Structure for Flow Parallel to the Ice Edge: Aircraft Observations from CEAREX', J. Geophys. Res. 96, 4691-4708.Google Scholar
  27. Troen, I. and Mahrt, L.: 1986, 'A Simple Model for the Atmospheric Boundary Layer: Sensitivities to Surface Evaporation', Boundary-Layer Meteorol. 37, 129-148.Google Scholar
  28. Vickers, D. and Mahrt, L.: 1997, 'Quality Control and Flux Sampling Problems for Tower and Aircraft Data', J. Atmos. Oceanic Tech. 14, 512-526.Google Scholar
  29. Yamada, T.: 1983, 'Simulation of Nocturnal Drainage Flows by a q 2 l Turbulence Closure Model', J. Atmos. Sci. 40, 91-106.Google Scholar
  30. Zilitinkevich, S. S., Grachev, A. A., and Fairall, C. W.: 2001, 'Scaling Reasoning and Field Data on the Sea Surface Roughness Lengths for Scalars', J. Atmos. Sci. 58, 320-325.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • C. Drüe
    • 1
  • G. Heinemann
    • 1
  1. 1.Meteorologisches Institut der Universität Bonn (MIUB)BonnGermany

Personalised recommendations