Queueing Systems

, Volume 39, Issue 2–3, pp 213–256

Asymptotic Expansions for the Congestion Period for the M/M/∞ Queue

  • Charles Knessl
  • Yongzhi Peter Yang
Article

Abstract

We consider the M/M/∞ queue with arrival rate λ, service rate μ and traffic intensity ρ=λ/μ. We analyze the first passage distribution of the time the number of customers N(t) reaches the level c, starting from N(0)=m>c. If m=c+1 we refer to this time period as the congestion period above the level c. We give detailed asymptotic expansions for the distribution of this first passage time for ρ→∞, various ranges of m and c, and several different time scales. Numerical studies back up the asymptotic results.

M/M/∞ queue busy period asymptotics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Abate and W. Whitt, Computing Laplace transforms for numerical inversion via continued fractions, INFORMS J. Comput. 11 (1999) 394–405.Google Scholar
  2. [2]
    M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).Google Scholar
  3. [3]
    D. Aldous, Probability Approximations via the Poisson Clumping Heuristic (Springer, New York, 1989).Google Scholar
  4. [4]
    C. Bender and S. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw–Hill, New York, 1978).Google Scholar
  5. [5]
    N. Bleistein and R.A. Handelsman, Asymptotic Expansions of Integrals (Dover, New York, 1986).Google Scholar
  6. [6]
    A.A. Borovkov, On limit laws for service processes in multi–channel systems, Siberian Math. J. 8 (1967) 746–763.Google Scholar
  7. [7]
    N.G. Duffield and W. Whitt, Control and recovery from rare congestion events in a large multi–server system, Queueing Systems 26 (1997) 69–104.Google Scholar
  8. [8]
    J.S. Evans and D. Everitt, On the teletraffic capacity of CDMA cellular networks, IEEE Trans. Vehicular Technol. 48 (1999) 153–165.Google Scholar
  9. [9]
    P.W. Glynn and W. Whitt, A new view of the heavy–traffic limit theorem for infinite–server queues, Adv. in Appl. Probab. 23 (1991) 188–209.Google Scholar
  10. [10]
    I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Series and Products (Academic Press, New York, 1994).Google Scholar
  11. [11]
    F. Guillemin, R. Mazumdar and A. Simonian, On heavy traffic approximations for transient characteristics of M / M / ?queues, J. Appl. Probab. 33 (1996) 490–506.Google Scholar
  12. [12]
    F. Guillemin and A. Simonian, Transient characteristics of an M/M/?system, Adv. in Appl. Probab. 27 (1995) 862–888.Google Scholar
  13. [13]
    D.L. Iglehart, Limit diffusion approximations for the many server queue and the repairman problem, J. Appl. Probab. 2 (1965) 429–441.Google Scholar
  14. [14]
    D.L. Iglehart, Weak convergence of compound stochastic processes, Stochactic Process. Appl. 1 (1973) 11–31.Google Scholar
  15. [15]
    D.L. Jagerman, Some properties of the Erlang loss function, Bell System Tech. J. 53 (1974) 525–551.Google Scholar
  16. [16]
    D.L. Jagerman, Nonstationary blocking in telephone traffic, Bell System Tech. J. 54 (1975) 625–661.Google Scholar
  17. [17]
    L. Kleinrock, Queueing Systems, Vol. I: Theory (Wiley, New York, 1975).Google Scholar
  18. [18]
    C. Knessl, On the distribution of the maximum number of broken machines for the repairman problem, SIAM J. Appl. Math. 54 (1994) 508–547.Google Scholar
  19. [19]
    C. Knessl, Geometrical optics approach to first–passage distributions: Caustic boundaries and exponentially small eigenvalues, Studies Appl. Math. 105 (2000) 301–332.Google Scholar
  20. [20]
    C. Knessl and C. Tier, Two tandem queues with general renewal input I: Diffusion approximation and integral representations, SIAM J. Appl. Math. 59 (1999) 1917–1959.Google Scholar
  21. [21]
    E.V. Krichagina and A.A. Puhalskii, A heavy–traffic analysis of a closed queueing system with a G I / ∞ service center, Queueing Systems 25 (1997) 235–280.Google Scholar
  22. [22]
    B.J. Matkowsky and Z. Schuss, The exit problem for randomly perturbed dynamical systems, SIAM J. Appl. Math. 33 (1977) 365–382.Google Scholar
  23. [23]
    J.A. Morrison, L.A. Shepp and C.J. Van Wyk, A queueing analysis of hashing with lazy deletion, SIAM J. Comput. 16 (1987) 1155–1164.Google Scholar
  24. [24]
    A. Nobile, L. Ricciardi and L. Sacerdote, Exponential trends of the Ornstein–Uhlenbeck first passage densities, J. Appl. Probab. 22 (1985) 360–369.Google Scholar
  25. [25]
    L.J. Slater, Confluent Hypergeometric Functions (Cambridge Univ. Press, New York, 1960).Google Scholar
  26. [26]
    W. Whitt, On the heavy–traffic limit theorem for G I / G /∞ queues, Adv. in Appl. Probab. 14 (1982) 171–190.Google Scholar
  27. [27]
    M. Williams, Asymptotic exit time distributions, SIAM J. Appl. Math. 42 (1982) 149–154.Google Scholar
  28. [28]
    S. Xie and C. Knessl, On the transient behavior of the Erlang loss model: Heavy usage asymptotics, SIAM J. Appl. Math. 53 (1993) 555–599.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Charles Knessl
    • 1
  • Yongzhi Peter Yang
    • 2
  1. 1.Department of Mathematics, Statistics and Computer Science (M/C 249)University of Illinois at ChicagoChicagoUSA
  2. 2.Department of MathematicsUniversity of St. ThomasSt. PaulUSA

Personalised recommendations