Educational Studies in Mathematics

, Volume 44, Issue 1–3, pp 25–53 | Cite as

Introduction to Proof: The Mediation of a Dynamic Software Environment

  • Maria Alessandra Mariotti


This paper, which reports on a long-term teaching experiment carried out in the 9th and 10th grades of a scientific highschool, is part of a larger co-ordinated research project. The workconstitutes a `research for innovation', in which action in the classroom isboth a means and result of a study aimed at introducing pupils totheoretical thinking and at studying the ways in which this process isrealised.The purpose of the study is to clarify the role of a particular software,Cabri-géomètre, in the teaching/learning process. Assuming aVygotskian perspective, attention is focussed on the social construction ofknowledge and on the semiotic mediation accomplished through culturalartefacts; the functioning of specific elements of the software will bedescribed and analysed as instruments of semiotic mediation used by theteacher in classroom activities.


10th Grade Teaching Experiment Social Construction Specific Element Classroom Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balacheff, N.: 1987, ‘Processus de preuve et situations de validation', Ed. Stud. in Math. 18, 147–176.CrossRefGoogle Scholar
  2. Balacheff, N.: 1998, ‘Construction of meaning and teacher control of learning', in D. Tinsley and D.C. Johnson (eds.), Information and Communications Technologies in School Mathematics, Chapman & Hall, IFIP, London, pp. 111–120.Google Scholar
  3. Balacheff, N. and Sutherland, R.: 1994, ‘Epistemological domain of validity of microworlds, the case of Logo and Cabri-géomtre', in R. Lewis and P. Mendelson (eds.), Proceedings of the IFIP TC3/WG3.3: Lessons from Learning, Amsterdam, North-Holland, pp. 137–150.Google Scholar
  4. Bartolini Bussi, M.G.: 1991, 'social interaction and mathematical knowledge', in F. Furenghetti (ed.), Proc. of the 15th PME Int. Conf., 1, Assisi, Italia, pp. 1–16.Google Scholar
  5. Bartolini Bussi, M.G.: 1994, ‘Theoretical and empirical approaches to classroom interaction', in Biehler, Scholz, Strässer and Winckelmann (eds.), Didactic of Mathematics as a Scientific Discipline, Kluwer, Dordrecht, pp. 121–132.Google Scholar
  6. Bartolini Bussi, M.G.: 1996, ‘Mathematical discussion and perspective drawing in primary school', Educational Studies in Mathematics 31(1–2), 11–41.CrossRefGoogle Scholar
  7. Bartolini Bussi, M.G.: 1999, ‘Verbal interaction in mathematics classroom: a Vygotskian analysis', in A. Sierpinska et al. (eds.), Language and Communication in Mathematics Classroom, NCTM.Google Scholar
  8. Bartolini Bussi, M.G. and Mariotti, M.A.: 1999, ‘Instruments for perspective drawing: Historic, epistemological and didactic issues', in G. Goldschmidt, W. Porter and M. Ozkar (eds.), Proc. of the 4th Int. Design Thinking Res. Symp. on Design Representation, Massachusetts Institute of Technology & Technion-Israel Institute of Technology, III, pp. 175–185Google Scholar
  9. Bartolini Bussi, M.G. and Mariotti, M.A.: 1999, ‘Semiotic mediation: from history to mathematics classroom', For the Learning of Mathematics 19(2), 27–35.Google Scholar
  10. Bartolini Bussi, M.G., Boni, M., Ferri, F. and Garuti, R.: 1999, ‘Early approach to theoretical thinking: Gears in primary school', Educational Studies in Mathematics 39(1–3), 67–87.CrossRefGoogle Scholar
  11. Bartolini Bussi, M.G., Boni, M. and Ferri, F. (to appear), ‘Construction problems in primary school: A case from the geometry of circle', in P. Boero (ed.), Theorems in School: From history and epistemology to cognitive and educational issues, Kluwer Academic Publishers.Google Scholar
  12. Baulac, Y., Bellemain, F. and Laborde, J.M.: 1988, Cabri-géomètre, un logiciel d'aide à l'enseignement de la géométrie, logiciel et manuel d'utilisation, Cedic-Nathan, Paris.Google Scholar
  13. Boero, P., Dapueto, C., Ferrari, P., Ferrero, E., Garuti, R., Lemut, E., Parenti, L., Scali, E.: 1995, ‘Aspects of the mathematics-culture relationship in mathematics teaching-learning in compulsory school', Proc. of PME-XIX, Recife.Google Scholar
  14. De Villiers, M.: 1990, ‘The role and function of proof in mathematics', Pythagoras 24, 17–24.Google Scholar
  15. Duval, R.: 1992–93, ‘Argumenter, demontrer, expliquer: continuité ou rupture cognitive?', Petit x 31, 37–61.Google Scholar
  16. Fischbein, E.: 1987, Intuition in Science and Mathematics, Reidel, Dordrecht.Google Scholar
  17. Halmos, P.: 1980, ‘The heart of mathematics', Mathematical monthly 87, 519–524.Google Scholar
  18. Hanna, G.: 1990, ‘Some pedagogical aspects of proof', Interchange 21, 6–13.CrossRefGoogle Scholar
  19. Heath, T.: 1956, The Thirteen Books of Euclid's Elements, Dover, vol. 1.Google Scholar
  20. Henry, P.: 1993, ‘Mathematical machines', in H. Hanken, A. Karlqvist and U. Svedin (eds.), The Machine as Metaphor and Tool, Springer-Verlag, pp. 101–122.Google Scholar
  21. Hilbert, D.: 1971, Foundation of Geometry, Open Court Classic (Original title Grundlagen der Geometrie, first published 1899).Google Scholar
  22. Hoelz, R.: 1996, ‘How does ‘dragging’ affect the learning of geometry', International Journal of Computer for Mathematical Learning 1.2, 169–187.Google Scholar
  23. Hoyles, C. and Noss, R.: 1996, Windows on Mathematical Meanings, Kluwer Academic Press.Google Scholar
  24. Hoyles, C.: 1993, ‘Microworlds/schoolworlds: The transformation of an innovation', in C. Keitel and K. Ruthven (eds.), Learning from Computers: Mathematics Education and Technology, NATO ASI Series, Springer-Verlag.Google Scholar
  25. Keitel, C. and Ruthven, K. (eds.),: Learning from Computers: Mathematics Education and Technology, Springer-Verlag.Google Scholar
  26. Goldengerg, E.P. and Cuoco, A.: 1998, ‘What is dynamic geometry?', in Lehrer and Chazan (eds.), Designing Learning Environments for Understanding of Geometry and Space, Erlbaum.Google Scholar
  27. Laborde, C. and Capponi, Bs.: 1994, ‘Cabri-géomètre constituant d'un mileu pour l'apprentissage de la notion de figure géométrique', Recherches en Didactiques des Mathematiques 14 (1.2), 165–210.Google Scholar
  28. Laborde, C.: 1992, ‘Solving problems in computer based geometry environment: The in-fluence of the features of the software', Zentralblatt für Didaktik der Mathematik 92(4), 128–135.Google Scholar
  29. Laborde, C.: 1993, ‘The computer as part of the learning environment: the case of geometry', in C. Keithel and K. Ruthven (eds.), Learning from Computers: Mathematics Education and Technology, NATO ASI Series, Springer Verlag.Google Scholar
  30. Laborde, J.M. and Strässer, R.: 1990, ‘Cabri-géomètre: A microworld of geometry for guided discovery learning', Zentralblatt für Didaktik der Mathematik 90(5), 171–177.Google Scholar
  31. Laborde, C. and Laborde, J.M.: 1991, ‘Problem solving in geometry: From microworlds to intelligent computer environments', in Ponte et al. (eds.), Mathematical Problem Solving and New Information Technologies, NATO ASI Series F, 89, pp. 177–192.Google Scholar
  32. Leont'ev, A.N.: 1976/1959, Problemi dello sviluppo psichico, Ed. Riuniti & Ed. Mir.Google Scholar
  33. Mariotti, M.A.: 1998, ‘Introduzione alla dimostrazione all'inizio della scuola secondaria superiore', L'insegnamento della matematica e delle Scienze Integrate 21B(3), 209–52.Google Scholar
  34. Mariotti, M.A.: 1996, ‘Costruzioni in geometria', su L'insegnamento della Matematica e delle Scienze Integrate 19B(3), 261–288.Google Scholar
  35. Mariotti, M.A: 1997, ‘Justifying and proving: figural and conceptual aspects', in M. Hejny and J. Novotna (eds.), Proceedings of the European Research Conference on Mathematical Education, Podebrady, Czech Republic.Google Scholar
  36. Mariotti, M.A., Bartolini Bussi, M., Boero P., Ferri, F. and Garuti, R.: 1997, ‘Approaching geometry theorems in contexts: from history and epistemology to cognition', Proceedings of the 21th PME Conference, Lathi, I, pp. 180–195.Google Scholar
  37. Mariotti, M.A. and Bartolini Bussi, M.G.: 1998, ‘From drawing to construction: teachers mediation within the Cabri environment', in Proceedings of the 22 nd PME Conference, Stellenbosh, I, pp. 180–195.Google Scholar
  38. Mariotti, M.A. (to appear), ‘Influence of technologies advances on students’ math learning', in L. English, M.G. Bartolini Bussi, G. Jones, R. Lesh and D. Tirosh (eds.), Handbook of International Research in Mathematics Education, Lawrence Erbaum Associates.Google Scholar
  39. Noss, R. and Hoyles, C.: 1996, Windows on Mathematical Meanings, Kluwer Academic Publishers.Google Scholar
  40. Simondon, G.: 1968, L'invention et le développement des techniques, Sorbonne, Paris, cours polycopié.Google Scholar
  41. Schoenfeld, A.: 1992, ‘Learning to think mathematically: problem solving, metacognition, and sense making in mathematics', in D.A. Grouws (ed.), Handbook of research on Mathematics teaching and learning, NCTM, pp. 334–366.Google Scholar
  42. Straesser, R.: 1991, Dessin et figure, IDM, Universitaet Bielefeld, Bielefeld, (Occasional Paper 128).Google Scholar
  43. Straesser, R.: 1992, Students’ Construction of Proof in a Computer Environment, IDM, Universitaet Bielefeld, Bielefeld, (Occasional Paper 134).Google Scholar
  44. Vygotskij, L.S.: 1978, Mind in Society. The Development of Higher Psychological Processes, Harvard University Press.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Maria Alessandra Mariotti
    • 1
  1. 1.Dipartimento di MatematicaUniversità di PisaItaly;

Personalised recommendations