Advertisement

Hyperfine Interactions

, Volume 116, Issue 1–4, pp 117–126 | Cite as

Microstructure of supersaturated fcc Al–Fe alloys: A comparison of rapidly quenched and mechanically alloyed Al98Fe2

  • R.A. Dunlap
  • J.R. Dahn
  • D.A. Eelman
  • G.R. MacKay
Article

Abstract

Alloys of the composition Al98Fe2 have been prepared by rapid quenching from the melt and mechanical alloying methods and have been studied by X‐ray diffraction techniques and room temperature 57Fe Mössbauer effect methods. Results may be summarized as follows: The rapidly quenched sample is a single phase supersaturated fcc Al–Fe alloy. Mössbauer effect spectra indicate the presence of a substantially greater degree of Fe clustering than is expected for a random distribution of atoms on the lattice sites. Mechanically alloyed samples have been studied as a function of milling time and show the initial formation of a supersaturated fcc phase with microstructural properties which are quite similar to those of the rapidly quenched sample. Further milling results in the reduction of the average grain size and the formation of an amorphous phase. Mössbauer studies and previously reported phase diagrams suggest that a substantial fraction of the Fe resides in this phase.

Keywords

Phase Diagram Milling Amorphous Phase Lattice Site Mechanical Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Bohorquez, J.A. Tabares, G.A. Perez Alcazar and J.R. Gancedo, Hyperf. Interact. 83 (1994) 311.Google Scholar
  2. [2]3
    R.A. Dunlap, D.A. Eelman, G.R. MacKay and V. Srinivas, in: Proc. Int. Conf. Physics of Disordered Materials, in press (1998).Google Scholar
  3. [3]
    C. Kuhrt and L. Schultz, IEEE Trans. Magn. 29 (1993) 2667.Google Scholar
  4. [4]
    S.A. Makhlouf, M. Shiga and K. Sumiyama, J. Phys. Soc. Japan 60 (1991) 3537.Google Scholar
  5. [5]
    D. Oleszak and P.H. Shingu, Mater. Sci. Eng. A 181/182 (1994) 1217.Google Scholar
  6. [6]
    J. Rawers, G. Slavens, D. Govier, C. Dogan and R. Doan, Metall. Mater. Trans. A 27 (1996) 3126.Google Scholar
  7. [7]
    K. Wolski, G. LeCaer, P. Delcroix, R. Fillit, F. Thevenot and J. LeCoze, Mater. Sci. Eng. A 207 (1996) 97.Google Scholar
  8. [8]
    E.P. Yelsukov, E.V. Voronina and V.A. Barinov, J. Magn. Magn. Mater. 115 (1992) 271.Google Scholar
  9. [9]
    E. Jartych, J.K. Zurawicz, D. Oleszak, J. Sarzynski and M. Budzynski, Hyperf. Interact. 99 (1996) 389.Google Scholar
  10. [10]
    E. Kuzmann, A. Vertes, A. Griger and V. Stefaniay, Hyperf. Interact. 92 (1994) 943.Google Scholar
  11. [11]
    D.K. Mukhopadhyay, C. Suryanarayana and F.H. Froes, Metall. Mater. Trans. A 26 (1995) 1939.Google Scholar
  12. [12]
    S. Nasu, S. Morimoto, H. Tanimoto, B. Huang, T. Tanaka, J. Kuyama, K.N. Ishihara and P.H. Shingu, Hyperf. Interact. 67 (1991) 681.Google Scholar
  13. [13]
    X.P. Niu, L. Froyen, L. Delaey and C. Peytour, J. Mater. Sci. 29 (1994) 3724.Google Scholar
  14. [14]
    D. Oleszak and P.H. Shingu, Mater. Sci. Forum 235-238 (1997) 91.Google Scholar
  15. [15]
    F. Cardelli, V. Contini and G. Mazzone, J. Mater. Sci. 31 (1996) 4175.Google Scholar
  16. [16]
    D.A. Eelman, R.A. Dunlap and V. Srinivas, in: Proc. Int. Conf. Physics of Disordered Materials, in press (1998).Google Scholar
  17. [17]
    S. Enzo, R. Frattini, R. Gupta, P.P. Macri, G. Principi, L. Schiffini and G. Scipione, Acta Mater. 44 (1996) 3105.Google Scholar
  18. [18]
    C. Bansal, Z.Q. Gao, L.B. Hong and B. Fultz, J. Appl. Phys. 76 (1994) 5961.Google Scholar
  19. [19]
    E. Bonetti, G. Scipione, G. Valdre, S. Enzo, R. Frattini and P.P. Macri, J. Mater. Sci. 30 (1995) 2220.Google Scholar
  20. [20]
    G.H. Fair and J.V. Wood, J. Mater. Sci. 29 (1994) 1935.Google Scholar
  21. [21]
    S. Nasu, U. Gonser, P.H. Singu and Y.J. Murakami, J. Phys. F: Met. Phys. 4 (1974) l24.Google Scholar
  22. [22]
    R.A. Dunlap, D.J. Lloyd, I.A. Christie, G. Stroink and Z.M. Stadnik, J. Phys. F: Met. Phys. 18 (1988) 1329.Google Scholar
  23. [23]
    B.S. Murty, M. Mohan Rao and S. Ranganathan, Mater. Sci. Eng. A 196 (1995) 237.Google Scholar
  24. [24]
    J. Dutkiewicz, L. Litynska and R. Swiatek, J. Mater. Proc. Tech. 53 (1995) 131.Google Scholar
  25. [25]
    D.G. Rancourt and J.Y. Ping, Nucl. Instrum. Meth. Phys. Res. B 58 (1991) 85.Google Scholar
  26. [26]
    V.I. Fadeva and A.V. Leonov, Mater. Sci. Eng. A 206 (1996) 90.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • R.A. Dunlap
  • J.R. Dahn
  • D.A. Eelman
  • G.R. MacKay

There are no affiliations available

Personalised recommendations