Advertisement

Hyperfine Interactions

, Volume 108, Issue 1–3, pp 219–225 | Cite as

Exploring new mass regions with the ISOLTRAP spectrometer

  • D. Beck
  • F. Ames
  • G. Audi
  • G. Bollen
  • H.-J. Kluge
  • A. Kohl
  • M. König
  • I. Martel
  • D. Lunney
  • R.B. Moore
  • H. Raimbault-Hartmann
  • M. de Saint Simon
  • E. Schark
  • S. Schwarz
  • J. Szerypo
  • the ISOLDE Collaboration
Article

Abstract

First direct mass measurements on rare earth isotopes around 146Gd have been performed with the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. More than 40 isotopes of the elements Pr, Nd, Pm, Sm, Eu, Dy and Ho have been measured with an accuracy of typically 1 × 10-7. In the case of 141Sm isomeric and ground state (ΔE = 175 keV) were resolved. Since isobaric contaminations are present in the ISOLDE beam, these measurements on rare earth isotopes became only possible after the installation of a new cooler trap which acts an isobar separator.

Keywords

Mass Measurement Cyclotron Frequency Accurate Mass Measurement Ground State Mass Cool Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    For an overview see: Proc. Nobel Symposium 91 on Trapped Charged Particles and Related Fundamental Physics, Lysekil, Sweden, 1994, Phys. Scr. T 59 (1995).Google Scholar
  2. [2]
    E. Kugler et al., Nucl. Instr. Methods B 70 (1992) 41.CrossRefADSGoogle Scholar
  3. [3]
    B. Jonson et al., Nucl. Phys. News 3 (1993) 5.Google Scholar
  4. [4]
    G. Bollen et al., Nucl. Instr. Methods A 368 (1996) 675.CrossRefADSGoogle Scholar
  5. [5]
    G. Savard et al., Phys. Lett. A 158 (1991) 247.CrossRefADSGoogle Scholar
  6. [6]
    M. König et al., Int. J. Mass Spectrom. Ion Proc. 142 (1995) 95.CrossRefGoogle Scholar
  7. [7]
    G. Bollen et al., Phys. Rev. C 46 (1992) R2140.CrossRefADSGoogle Scholar
  8. [8]
    H. Stolzenberg et al., Phys. Rev. Lett. 65 (1990) 3104.Google Scholar
  9. [9]
    G. Bollen et al., J. Mod. Opt. 39 (1992) 257.Google Scholar
  10. [10]
    T. Otto et al., Nucl. Phys. A 567 (1994) 281.MathSciNetCrossRefADSGoogle Scholar
  11. [11]
    G. Audi and A.H. Wapstra, Nucl. Phys. A 565 (1993) 1.CrossRefADSGoogle Scholar
  12. [12]
    G. Audi and A.H. Wapstra, Nucl. Phys. A 595 (1995) 409.CrossRefADSGoogle Scholar
  13. [13]
    G.D. Alkhazov et al., Z. Phys. A 344 (1993) 425.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • D. Beck
    • 1
  • F. Ames
    • 2
  • G. Audi
    • 3
  • G. Bollen
    • 2
  • H.-J. Kluge
    • 1
  • A. Kohl
    • 1
  • M. König
    • 1
  • I. Martel
    • 6
  • D. Lunney
    • 3
  • R.B. Moore
    • 4
  • H. Raimbault-Hartmann
    • 3
  • M. de Saint Simon
    • 2
  • E. Schark
    • 5
  • S. Schwarz
    • 1
  • J. Szerypo
    • 3
  • the ISOLDE Collaboration
    • 3
  1. 1.GSI-DarmstadtDarmstadtGermany
  2. 2.CERNGenevaSwitzerland
  3. 3.CSNSM, IN2P3-CNRSOrsay CampusFrance
  4. 4.Foster Radiation LaboratoryMcGill UniversityMontrealCanada
  5. 5.Institut für PhysikUniversität MainzMainzGermany
  6. 6.Instituto de Estructura de la MateriaCSICMadridSpain

Personalised recommendations