Hyperfine Interactions

, Volume 117, Issue 1–4, pp 271–319 | Cite as

Interplay of surface conditions, particle size, stoichiometry, cell parameters, and magnetism in synthetic hematite-like materials

  • M.-Z. Dang
  • D.G. Rancourt
  • J.E. Dutrizac
  • G. Lamarche
  • R. Provencher
Article

Abstract

We have studied several synthetic hematite-like materials, produced via different reactions using various hydrothermal conditions and various temperatures of annealing in air, by bulk elemental analysis, weight loss measurements, scanning electron microscopy, powder X-ray diffraction, Mössbauer spectroscopy, and SQUID magnetometry. We conclude that hematite-like materials cannot be related to pure stoichiometric hematite via a single stoichiometric or physical parameter and that at least two degrees of freedom are required. This is most clearly seen when we introduce a plot of the cell parameter c versus the cell parameter a on which hematite-like materials do not fall on a single line but occupy an entire region that is bounded by hydrohematite-hematite and protohematite-hematite lines. A Morin transition boundary on this c-a plot separates a region where Morin transitions occur from a larger region where Morin transitions do not occur down to 4.2 K. Previous claims that particle size is the dominant factor controlling the Morin transition are understood in terms of correlations between stoichiometry and particle size that are produced at synthesis. Changing contents of incorporated molecular water and structural hydroxyls with associated cation vacancies have different characteristic effects on the crystal structure and move the sample coordinates in different directions on a c-a plot. It is also shown that an accessory sulphate content is adsorbed on the individual hematite crystallites and is not structurally incorporated. Mössbauer spectroscopy is used, as usual, to identify and characterize the spin structure. In addition, hyperfine field distributions from room temperature spectra, extracted by a new method, give a sensitive measure of sample conditions but not a unique one since several factors affect the extracted distributions in similar ways.

hematite hydrohematite protohematite Mössbauer Morin transition microstructure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.M. Cornell and U. Schwertmann, The Iron Oxides: A Comprehensive Account of a Rapidly Expanding Field (VCH Publ., 1996).Google Scholar
  2. [2]
    A.H. Morrish, Canted Antiferromagnetism: Hematite (World Scientific, Singapore, 1994).Google Scholar
  3. [3]
    J.E. Dutrizac, in: Productivity and Technology in the Metallurgical Industries, eds. M. Koch and J.C. Taylor, The Minerals, Metals and Materials Society, Warrendale (1989) p. 587.Google Scholar
  4. [4]
    M.-Z. Dang, M.Sc. thesis, University of Ottawa (1992).Google Scholar
  5. [5]
    D.G. Rancourt and J.Y. Ping, Nucl. Instrum. Methods Phys. Res. B 58 (1991) 85.ADSGoogle Scholar
  6. [6]
    D.E. Appleman and H.T. Evans Jr., US Geol. Surv. Comput. Contribution 20, Job 9214 (1973).Google Scholar
  7. [7]
    G. Lamarche, Rev. Sci. Instrum. 60 (1989) 943.ADSCrossRefGoogle Scholar
  8. [8]
    E. Wolska and U. Schwertmann, Z. Kristallographie 189 (1989) 223; and references therein.CrossRefGoogle Scholar
  9. [9]
    H. Stanjek and U. Schwertmann, Clays Clay Miner. 40 (1992) 347.Google Scholar
  10. [10]
    H. Stanjek, Ph.D. thesis, Technische Universitat Muenchen (1991).Google Scholar
  11. [11]
    E. Wolska, Solid State Ionics 28–30 (1988) 1349.CrossRefGoogle Scholar
  12. [12]
    E. Wolska and W. Szajda, J. Mater. Sci. 20 (1985) 4407.CrossRefADSGoogle Scholar
  13. [13]
    E. Wolska, Z. Cristallographie 154 (1981) 69.CrossRefGoogle Scholar
  14. [14]
    E. Wolska, Monatshefte Chemie 108 (1977) 819.CrossRefGoogle Scholar
  15. [15]
    G. Okamoto, R. Furuichi and N. Sato, Electrochim. Acta 12 (1967) 1287.CrossRefGoogle Scholar
  16. [16]
    S.J. Gregg and K.J. Hill, J. Chem. Soc. 4 (1953) 3945.CrossRefGoogle Scholar
  17. [17]
    A. Beran, Eur. J. Mineral. 3 (1991) 971.Google Scholar
  18. [18]
    H.P. Klug and L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (Wiley, New York, 1974).Google Scholar
  19. [19]
    J.I. Langford and D. Louer, Rep. Prog. Phys. 59 (1996) 131.ADSCrossRefGoogle Scholar
  20. [20]
    G.K. Williamson and W.H. Hall, Acta Metallurgica 1 (1953) 22.CrossRefGoogle Scholar
  21. [21]
    J.I. Langford, in: Accuracy in Powder Diffraction II, eds. E. Prince and J.K. Stalick, NIST Spec. Pub. No. 846 (US Dept. of Commerce, Gaithersburg, MA, 1992) p. 110.Google Scholar
  22. [22]
    P.H. Duvigneaud and R. Derie, J. Solid State Chem. 34 (1980) 323.ADSCrossRefGoogle Scholar
  23. [23]
    G.N. Kryukova, S.V. Tsybulya, L.P. Solovyeva, V.A. Sadykov, G.S. Litvak and M.P. Andrianova, Math. Sci. Engrg. A 149 (1991) 121.CrossRefGoogle Scholar
  24. [24]
    W. Kündig, H. Bömmel, G. Constabaris and R.H. Lindquist, Phys. Rev. 142 (1966) 327.ADSCrossRefGoogle Scholar
  25. [25]
    F. van der Woude, Phys. Status Solidi 17 (1966) 417.Google Scholar
  26. [26]
    A.M. van der Kraan, Phys. Status Solidi A 18 (1973) 215.ADSGoogle Scholar
  27. [27]
    R.C. Nininger Jr. and D. Schroeer, J. Phys. Chem. Solids 39 (1978) 137.CrossRefADSGoogle Scholar
  28. [28]
    J.A. Amelse, K.B. Arcuri, J.B. Butt, R.J. Matyi, L.H. Schwartz and A. Shapiro, J. Phys. Chem. 85 (1981) 708.CrossRefGoogle Scholar
  29. [29]
    C.L. Bruzzone and R. Ingalls, Phys. Rev. B 28 (1983) 2430.ADSGoogle Scholar
  30. [30]
    E. De Grave, D. Chambaere and L.H. Bowen, J. Magn. Magn. Mater. 30 (1983) 349.ADSCrossRefGoogle Scholar
  31. [31]
    D.G. Rancourt, S.R. Julian and J.M. Daniels, J. Magn. Magn. Mater. 49 (1985) 305.ADSCrossRefGoogle Scholar
  32. [32]
    N.-H.J. Gangas, T. Bakas and A. Moukarika, Hyp. Interact. 23 (1985) 245.CrossRefADSGoogle Scholar
  33. [33]
    Q.A. Pankhurst, C.E. Johnson and M.F. Thomas, J. Phys. C: Solid State Phys. 19 (1986) 7081.ADSCrossRefGoogle Scholar
  34. [34]
    J. Chadwick, D.H. Jones, M.F. Thomas, G.J. Tatlock and R.W. Devenish, J. Magn. Magn. Mater. 59 (1986) 301.ADSCrossRefGoogle Scholar
  35. [35]
    E. Murad and U. Schwertmann, Clays Clay Miner. 34 (1986) 1.Google Scholar
  36. [36]
    R.V. Morris, D.G. Agresti, H.V. Lauer Jr., J.A. Newcomb, T.D. Shelfer and A.V. Murali, J. Geophys. Res. 94 (1989) 2760.ADSCrossRefGoogle Scholar
  37. [37]
    E. De Grave, L.H. Bowen, D.D. Amarasiriwardena and R.E. Vandenberghe, J. Magn. Magn. Mater. 72 (1988) 129.ADSCrossRefGoogle Scholar
  38. [38]
    E. De Grave and R.E. Vandenberghe, Phys. Chem. Miner. 17 (1990) 344.ADSGoogle Scholar
  39. [39]
    E. Murad and J.H. Johnston, in: Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 2, ed. G.J. Long (Plenum, New York, 1987) p. 507.Google Scholar
  40. [40]
    E. Murad, Phys. Chem. Miner. 23 (1996) 248.CrossRefADSGoogle Scholar
  41. [41]
    R.E. Vandenberghe, E. De Grave, C. Landuydt and L.H. Bowen, Hyp. Interact. 53 (1990) 175.CrossRefADSGoogle Scholar
  42. [42]
    D. Schroeer and R.C. Nininger Jr., Phys. Rev. Lett. 19 (1967) 632.ADSCrossRefGoogle Scholar
  43. [43]
    R.E. Vandenberghe, T. Becze-Deak and E. De Grave, in: Proc. of ICAME '95 Conf., Vol. 50, ed. I. Ortalli, SIF, Bologna (1996) p. 207.Google Scholar
  44. [44]
    J.O. Artman, J.C. Murphy and S. Foner, Phys. Rev. 138 (1965) A912.ADSCrossRefGoogle Scholar
  45. [45]
    L.M. Levinson, M. Luban and S. Shtrikman, Phys. Rev. 187 (1969) 715.ADSCrossRefGoogle Scholar
  46. [46]
    P.J. Besser, A.H. Morrish and C.W. Searle, Phys. Rev. 153 (1967) 632.ADSCrossRefGoogle Scholar
  47. [47]
    N. Yamamoto, J. Phys. Soc. Japan 24 (1968) 23.CrossRefADSGoogle Scholar
  48. [48]
    I.S. Jacobs, R.A. Beyerlein, S. Foner and J.P. Remeika, Internat. J. Magn. 1 (1971) 193.Google Scholar
  49. [49]
    J.Z. Liu, J. Magn. Magn. Mater. 54–57 (1986) 901.ADSCrossRefGoogle Scholar
  50. [50]
    T. Fujii, M. Takano, R. Kakano, Y. Isozumi and Y. Bando, J. Magn. Magn. Mater. 135 (1994) 231.ADSCrossRefGoogle Scholar
  51. [51]
    I. Dzyaloshinsky, Phys. Chem. Solids 4 (1958) 241.CrossRefADSGoogle Scholar
  52. [52]
    T. Moriya, Phys. Rev. 120 (1960) 91.ADSCrossRefGoogle Scholar
  53. [53]
    M. Kataoka, O. Nakanishi, A. Yanase and J. Kanamori, J. Phys. Soc. Japan 53 (1984) 3624.CrossRefADSGoogle Scholar
  54. [54]
    L.M. Sandratskii and J. Kubler, Phys. Rev. Lett. 76 (1996) 4963.ADSCrossRefGoogle Scholar
  55. [55]
    L.M. Sandratskii, M. Uhl and J. Kubler, J. Phys.: Condens. Matter 8 (1996) 983.ADSCrossRefGoogle Scholar
  56. [56]
    L.M. Sandratskii and J. Kubler, Europhys. Lett. 33 (1996) 447.ADSCrossRefGoogle Scholar
  57. [57]
    G.J. Muench, S. Arajs and E. Matijevic, Phys. Status Solidi A 92 (1985) 187.ADSGoogle Scholar
  58. [58]
    C.W. Searle, Phys. Lett. 25 A (1967) 256.ADSGoogle Scholar
  59. [59]
    R.C. Wayne and D.H. Anderson, Phys. Rev. 155 (1967) 496.ADSCrossRefGoogle Scholar
  60. [60]
    C.J. Serna and J.E. Iglesias, J. Math. Sci. Lett. 5 (1986) 901.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • M.-Z. Dang
    • 1
  • D.G. Rancourt
    • 1
  • J.E. Dutrizac
    • 2
  • G. Lamarche
    • 1
  • R. Provencher
    • 3
  1. 1.Department of PhysicsUniversity of OttawaOttawaCanada
  2. 2.CANMETOttawaCanada
  3. 3.RTZ Iron and Titanium Inc.TracyCanada

Personalised recommendations